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Abstract The Dresden Open Software Toolbox (Drops-
Box) is a software modelling toolbox consisting of a set
of open source tools developed by the Software Tech-
nology Group at TU Dresden. The DropsBox is built
on top of the Eclipse Platform and the Eclipse Model-
ing Framework. The DropsBox contributes to the de-
velopment and application of domain-specific langua-
ges (DSLs) in model-driven software development. It can
be customised by tool and language developers to sup-
port various activities of a DSL’s life cycle ranging from
language design to language application and evolution.
In this paper, we provide an overview of the DSL life
cycle, the DropsBox tools, and their interaction on a
common example. Furthermore, we discuss our experi-
ences in developing and integrating tools for DropsBox
in an academic environment.

Key words Domain-Specific Modelling Environment,
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1 Introduction

Domain-specific modelling (DSM) and model-driven soft-
ware development (MDSD) propose the creation and ex-
ploitation of models, i.e., abstract representations of the
knowledge about a particular domain, in the design and
implementation of software systems. Models are typi-
cally built by using custom languages—called DSLs—
that match the concepts found in a particular domain.
This is meant to ease the representation, analysis, or
processing of domain knowledge and the communication
between domain experts and software engineers. The ap-
plication of such methodologies is known to enhance ef-
ficiency and quality of software engineering [1,2,3].

Domain-specific modelling tools are meant to sup-
port DSM and MDSD by employing model-driven meth-
ods in the development (metamodelling) and application
(modelling) of DSLs. The Software Technology Group at
TU Dresden1 participated in several research projects
addressing di↵erent concerns of research in domain-spe-
cific modelling tools. During this work, several (meta-)
modelling tools were developed. Over time, we found
more and more relationships between these tools and
possibilities to combine them. Recently, we decided to
bundle these tools in a joint software modelling toolbox—
the DropsBox. The tools of DropsBox are built on the
Eclipse Platform [4] and the Eclipse Modeling Frame-
work (EMF) [5] as a common core. In particular, all tools
use the EMF’s Ecore as a common metamodelling lan-
guage which allows a transparent exchange of (meta-)
models between di↵erent tools. Ecore is aligned with the
OMG’s EMOF standard [6] for metamodelling.

The DropsBox (like other toolboxes) contributes sev-
eral diverse and versatile tools for language develop-
ment and application. Although such a language tool-
box already integrates several, individually usable, tools
into reasonable collections, it still o↵ers an overwhelming
amount of capabilities for development and application
of DSLs. There are publications and tutorials for indi-
vidual tools, however, those are often highly abstract
and decoupled from a realistic language engineering ap-
proach. From our users we learned that a complete and
integrated overview on how to use and combine the tools
of such tool boxes is missing. With this paper, we address
this problem and provide an overview of DropsBox cover-
ing both language design and application. Furthermore,
we generalise and relate our experiences to be transfer-
able and interesting for users and developers of other
tools and toolboxes.

1 http://st.inf.tu-dresden.de/

http://st.inf.tu-dresden.de/
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The contributions of this paper are as follows. First,
we generalise the problems in designing, building, and
maintaining DSLs by introducing a DSL life cycle cover-
ing both the development and application of DSLs. We
discuss activities and relations during individual phases
in a DSL’s life. This enables a categorisation of tools in
the DropsBox and provides readers with a quick overview
of their capabilities and application context. Second, we
instantiate this life cycle for a continuous example using
tools of DropsBox. We show how our tools map to the
phases and activities in the DSL life cycle. Thereby, we
address the problem of integrated tool application and
give readers an impression, how a toolbox can be instan-
tiated for a concrete DSL. Furthermore, we give pointers
to tools that can be alternatively used. Third, we ad-
dress the problem of tool interoperability by discussing
the importance of a common integration platform (in
our case EMF) to enable a combination of the capabili-
ties of di↵erent tools in a toolbox. Fourth, we apply each
DropsBox tool to a common example. This covers tools
used in DSL development and tools used in DSL applica-
tion. Readers are provided with material to understand
the background for each tool, its application, and its in-
teraction and relation with other DropsBox tools. Fifth,
we reflect the challenges and benefits of building and
using a toolbox. We report on lessons learned with re-
spect to joint development of tools and their impact on
our research, practice of software development, and the
education of computer science students.

The remainder of this paper is structured as follows.
Sect. 2 introduces the general DSL life cycle. Sect. 3
demonstrates the instantiation of this life cycle with tools
from the DropsBox using a common example. Sect. 4
discusses the importance and generalises the character-
istics of a common integration toolbox. Afterwards, in
Sects. 5–14, we introduce and discuss each tool in turn
(cf. Table 1). In Sect. 16, we discuss lessons learned in
developing the tools of DropsBox as part of our research
activities. The paper is concluded in Sect. 17.

2 DSL Development and Application

Traditionally, approaches to build DSLs originated from
artefacts like abstract syntax, concrete syntax and se-
mantics that are involved in language design and im-
plementation. They did not use a particular process or
methodology, but solely focused on activities that were
required to provide these artefacts. The lack of a system-
atic approach towards language engineering was identi-
fied and addressed by various authors [47,2,48]. Mernik
et al. stress the importance of an explicit analysis and
design phase preceding the implementation of DSLs [2].
When the idea of developing a DSL arises, the DSL au-
thors almost passed the decision phase according to the
five development stages from [2]: decision, analysis, de-
sign, implementation and deployment. These phases ba-
sically correspond to those described by Antkiewicz et
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Figure 1 Life cycle for DSL development and application.

al. [48], namely inception, elaboration, construction, and
transition where inception can be mapped to decision
and analysis, and the others to design, construction, and
deployment, respectively. Antkiewicz et al. also empha-
sise the iterative character of DSL engineering.

These processes already cover the main aspects of
language building. Additionally, we suggest to consider
the application and the evolution of DSLs as vital phases
of language engineering that significantly shape their life
cycle. To reflect their significance and to show their im-
pact, we propose a refined and extended life cycle for
DSL development and application depicted in Fig. 1.

This life cycle starts with the analysis of require-
ments and an initial design for the new DSL. Require-
ments analysis typically covers aspects like language syn-
tax (abstract and concrete), semantics or functionality
required with respect to language tooling. In addition,
language design requires an in depth specification of the
required language concepts and expressions. These are
typically declared in the DSL’s abstract syntax specifi-
cation that forms the foundation for all following phases
of the DSL life cycle.

During the implementation phase, the abstract syn-
tax might be refined and augmented with more imple-
mentation detail. Furthermore, this phase is concerned
with the implementation of the concrete syntax (i.e., tex-
tual or graphical) for the language and language seman-
tics, as earlier defined in the language requirements. This
phase is often based on formal specifications ensuring
the syntactic and semantic soundness of the DSL. The
semantics specification typically consists of two main
ingredients: the definition of static semantics including
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Tool Name Capabilities for DSL Life Cycle Related Tools

EMFText Generative framework for concrete syntax implementation. Sup-
ports language implementation by the generation of parsers, print-
ers, a sophisticated editor, and additional language tooling.

Xtext [7], TCS [8], Mon-
ticore [9], Sintaks [10],
TEF [11], Spoofax [12]

JastEMF Adaptation of JastAdd attribute grammars for an application with
EMF. Supports language implementation by providing generative
tooling to derive an implementation of language semantics from
an representation based on attribute grammars.

Silver [13], Kiama [14], FU-
JABA [15,16], SmartEMF [17]

Dresden
OCL

Parsing, interpretation and compilation of OCL con-
straints for models of several technical spaces. Supports
language implementation by enabling the specification and eval-
uation of well-formedness constraints for metamodels. Supports
language evolution by providing a reuseable constraint language
that can be integrated in custom DSLs.

Eclipse (MDT) OCL [18],
USE [19], SQUAM [20].

DEFT Documentation of arbitrary models and metamodels. Supports
language deployment and language application by providing so-
phisticated means for creating and maintaining language and arte-
fact documentation.

GenDoc [21], Intent [22]

MDPE
Workbench

Model-driven performance analysis. Supports
language application by providing means to annotate arbi-
trary process models with performance data and to apply
automated performance analysis.

PUMA [23,24], SPMDA [25].

Reuseware Introduction of components in arbitrary EMF-based DSLs. Sup-
ports language application by providing advanced means in build-
ing systems using invasive software composition.

Kompose [26], GeKo [27],
GenAWeave [28], MATA [29]

Refactory Specification and implementation of model refactorings. Supports
language application and language evolution by providing generic
and customisable refactorings that can be applied for various mod-
elling and metamodelling languages, respectively.

EWL [30], EMF Refactor [31],
Operation Recorder [32],
GenericMT & Kermeta [33]

Feature-
Mapper

Realisation of software product lines using arbitrary DSLs. Sup-
ports language application and language evolution by providing
variability management for EMF-based modelling and metamod-
elling languages, respectively.

Model Templates [34], CIDE
[35], VML* [36]

Picus Faceted classification and browsing of arbitrary DSLs. Supports
language application and language implementation by providing
means for organising and accessing libraries of reuseable DSL and
implementation fragments.

MoDisco [37] (Model Browser
Component)

LanGems Role-based language composition system. Supports
language design and language evolution by enhancing reuse
through language modularity and flexible means for composition.

EMF [5], KM3 [38], Ker-
meta [39], NetbeansMDR [40],
MOFLON [41], MPS [42],
MetaEdit+ [43], OSLO [44].
HIVE [45]

JaMoPP EMFText-based model parser and printer of the Java language.
Supports language design and language evolution by allowing the
reuse and integration of Java expressions in DSLs.

MoDisco [37], Spoon [46]

Table 1 DropsBox tools, their capabilities and mapping to the DSL life cycle, and related tools with similar capabilities.

well-formedness rules for language instances and the speci-
fication of the DSL execution semantics, i.e., its dynamic
behaviour. In practise, formal language specifications are
frequently replaced by pragmatic approaches like manu-
ally developed compilers or interpreters that implement
the language semantics.

Once the DSL is implemented, it is typically deployed.
The deployment phase is concerned with building a de-
liverable product from the language implementation and
distributing it to language users. Another vital aspect of
such distribution is to provide appropriate documenta-
tion for users to understand the syntax and semantics of
the DSL. Therefore, concepts of the DSL itself should be
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documented. Hence, tutorials or code examples should
be created that describe the practical application of the
newly created language.

The most lively and varied phase of the DSL life
cycle is its application. It involves the creation of lan-
guage instances to implement concrete software systems
and solve certain problems. This phase results in a num-
ber of artefacts written in the DSL and has to face a
plethora of very specific practical challenges, e.g., refac-
toring of, component orientation for, performance analy-
sis of, browsing of large sets of, or the creation of product-
lines of DSL instances.

The active application typically exposes weaknesses,
design flaws and missing features that motivate the evo-
lution of the initial DSL design. This was also observed
in [49,50]. Such evolution may a↵ect the results of all
previously described phases and may trigger a new itera-
tion in the language life cycle. As existing DSL specifica-
tions are refined and adapted, language instances need to
co-evolve accordingly to conform to the changed speci-
fications. Evolution may also become necessary, when
an existing DSL needs to be embedded into a new lan-
guage. As both, language refinement and embedding, in-
volves the adaptation and integration of languages and
language implementations, aspects like language reuse
and composition are important for the evolution phase.

Every phase in such a life cycle should be supported
by certain tools to support developers and to automate
repetitive and error-prone activities. The concrete activ-
ities named in Fig. 1 are some examples of a plethora
of potential activities. In the next section they will be
used to map the functionality provided by the DropsBox
tools introduced in this paper to the respective develop-
ment phase they support. The selected activities are not
mandatory in all concrete language life cycles and are not
considered an exhaustive collection. There is also a large
set of related tools that represent alternatives to con-
crete DropsBox tools. Table 1 introduces the DropsBox
tools covered in this paper, discusses their capabilities
for concrete activities of our life cycle they address, and
mentions related or alternative tools. For the discussion
of related tools we refer to the individual tool sections.

3 Life Cycle Instantiation for an Example DSL

In the previous section, we introduced the general phases
and activities of the DSL life cycle. The concrete reali-
sation of its phases and activities heavily depend on the
actual DSL and the set of tools employed for its cre-
ation. Hence, we consider a selection of tools for devel-
oping and applying a concrete DSL as an instantiation of
the general DSL life cycle. In this section, we illustrate
such an instantiation by applying the DropsBox tools
to the AppFlow, which allows developers to specify the
Graphical User Interface (GUI) and user interactions of
dialogue-based applications. The AppFlow is used as a
common, running example throughout this paper.

3.1 The AppFlow DSL

AppFlow is based on the Flow Language used in the
open-source framework flowR2 and inspired by the Di-
alog Flow Notation presented in [51]. A central objec-
tive of the DSL is the specification of the dialogue flow,
which is defined by a state machine. State machines o↵er
an event-driven, dynamic model for behaviour specifica-
tion. It allows a separation of user interface components
and functionality. The latter can be realised by functions
which are called during application execution [52].

The metamodel of the AppFlow language is shown in
Fig. 2. Its elements are described in the following. App-
Flow Applications entail a StateModel, which consists
of States, Events, and Transitions. Those elements
are defined in the statemodel package. An Action is
performed in a State. AppFlow defines two types of
Actions in the actions package. One type is used to
show Screens (ShowScreenAction) and the other one is
used to call Java methods (JavaAction). A Transition
changes an application’s state. It is triggered by an Event.
An Event is sent by a Button as the result of a mouse
click, or is fired as result of executing a JavaAction.
The screenmodel package contains the Screen element.
A Screen is defined as a Composite that contains sev-
eral Widgets. Those dialogue elements are defined in the
widgets package. Available Widgets are TextFields,
Texts, UILists, Buttons, or Panels for nesting Widgets.
To keep the example comprehensible, data-bindings and
the UI layout are not considered in this paper.

3.2 A Project Dashboard Example

To give an impression on how to use the AppFlow DSL,
we will shortly present its application to define the di-
alogue flow of a simple project dashboard, taken from
the project management domain. The application lists
projects and shows their details after an authorised user
login. The main part of the application is a dashboard
enumerating a list of current projects and their prop-
erties. Users can select a project to get project-specific
information and may invoke a help screen.

The textual specification of the project dashboard is
shown in Fig. 3. The first line specifies the name of the
application—in that case it is simply App. The state-
model is specified from line 3 to 28. Lines 4 to 9 de-
clare the existing states. The initial state marks the
entry point of our application. The next line declares
the login state, which is combined with an action to
show the login screen. In line 6, checklogin is speci-
fied to call the static Java method checkLogin of the
LoginService class. Lines 7 to 9 declare the remaining
three states idle, help and showdetails. A final state
is not directly modelled, since it is implicitly reachable
from every state by closing the application.

2 http://www.flowr.org/

http://www.flowr.org/
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Figure 2 Metamodel of the AppFlow DSL.

Lines 11 to 16 declare events causing transitions,
whereas lines 18 to 27 define the actual transitions. A
transition statement refers to a source state on the left
and target state on the right hand side, separated by
->. Line 18 shows the transition from initial to login,
which is always executed since no event has been speci-
fied. Triggering events can be declared before the transi-

Figure 3 Example dashboard application in AppFlow.

tion symbol, e.g., in line 19 the event next is declared as
a trigger from login to checklogin. As shown in lines 20
and 21, a state may have multiple outgoing transitions,
all caused by a di↵erent event.

The statemodel description is followed by screen defi-
nitions. Lines 30 to 36 specify that the login screen con-
sists of a text element nametext with the label Project
Manager Name, a textfield username for the user’s login-
name, another label pwdtext and a corresponding text-
field password for the user’s password. The login but-
ton is defined in line 35. If a user pushes this button, next
is triggered and the state transition defined in line 19
takes e↵ect and leads to the state checkLogin.
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Figure 4 DropsBox tools mapped to the life cycle of the
AppFlow DSL. The numbers in brackets refer to the tool’s
explanation section in this article.

3.3 Mapping DropsBox to the AppFlow Life Cycle

The instantiation of DropsBox in the life cycle is driven
by the needs of the AppFlow language. As indicated in
Table 1, the tools are not necessarily restricted to a con-
crete life cycle phase and could be substituted by equiv-
alent tools or complemented by others. Fig. 4 visualises
the mapping of the tools to the concrete life cycle phases
of the AppFlow language. In the following, we shortly
outline how our tools are used in the development and
application AppFlow. Their role within the DropsBox,
the concrete application and a comparison to related
tools will be discussed afterwards individually in each
tool section.

Based on the AppFlow requirements, we specify the
abstract syntax in EMF/Ecore in the analysis and de-
sign phase. As we discuss later in Sect. 4, EMF/Ecore
additionally contributes unique technological character-
istics that are vital for the implementation of and the
interoperability of all tools in the DropsBox. As the re-
quirement analysis for the DSL in this case is an activity
without concrete tool support, it is not discussed here.

In the implementation phase, a textual syntax for
AppFlow is defined and a textual editor for Eclipse is
generated using EMFText. In addition, semantics needs
to be specified to derive context-sensitive properties and
ensure wellformedness of AppFlow instances. In our ex-
ample, we use JastEMF to implement an attribute gram-
mar for computing the reachable states in a dialogue.
On the other hand, Dresden OCL is used to define well-
formedness rules on the models.

While there is an overlap in the capabilities of some
of the DropsBox tools, we experienced that for some
tasks, one tool might be more appropriate for solving
the problem than the other. A detailed discussion on
how JastEMF and Dresden OCL intersect and on which
tasks they can be applied is given in Sect. 6.3.

In the deployment phase, we suggest the application
of DEFT to create and maintain rich documentation for
languages and language expressions to support the users
of AppFlow. Other aspects of language deployment like
building and distribution are not covered by any Drops-
Box tool and, therefore, not discussed here.

For the application phase, we discuss the employ-
ment of DropsBox to address specific practical challenges
of AppFlow application. MDPE is used for performance
analyses on AppFlow instances. Furthermore, Reuseware
adds component support to AppFlow models, whereas
Refactory enables refactoring support on the DSL. In
addition, Picus is used for browsing a collection of App-
Flow model templates, and the FeatureMapper enables
product-line engineering with AppFlow.

In the evolution phase, tools that enable language
evolution are applied. LanGems fosters the modulari-
sation and composition of di↵erent DSLs. It is used to
derive a modular and more extensible version of App-
Flow. JaMoPP lifts the Java programming language to
the modelling level and is applied to develop an exten-
sion of AppFlow that reuses Java expressions.

4 Architectural Principles of DropsBox

In the previous section we introduced EMF/Ecore as
means for syntax specification during language design.
In addition, EMF provides the architectural and techno-
logical foundation for interoperability among all tools in
the DropsBox. All DropsBox tools mapped to life cycle
phases can be freely combined without further adapta-
tion steps. Artefacts produced in one tool can be shared
with other tools and integrated with artefacts they pro-
duce. As tool integration is a significant problem in in-
dustry we want to enable a transfer of our experiences to
other tool integration scenarios. Therefore, this section
analyses which properties of EMF induce interoperabil-
ity and how they are employed by the DropsBox tools.

Expressive data description language EMF is centered
around the expressive data description language Ecore.
Ecore allows the specification of graph-structured data
with distinct spanning trees. Graphs are feasible to rep-
resent data from arbitrary domains and are thus com-
mon means to build data structures. As arbitrary graph
structures would lead to more complex algorithms (and
thus to ine�cient tool implementations), each model in
Ecore has a unique spanning tree, specified by its meta-
models containment hierarchy. This leads to less complex
algorithms, e�cient traversal strategies and more reli-
able tool implementations. Relying on a formalism that
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is versatile enough to cover a large set of applications,
is a prerequisite for successful integration. Basically, all
DropsBox tools use Ecore and operate on the induced
graph structures.

Strong facilities for reflection EMF has strong facili-
ties for reflection. It allows developers inspecting model
instances easily and can therefore enable tools to work
with DSLs that are not known beforehand. Reflection is
an essential prerequisite to build tools in a more generic
way. Tools can adjust their behavior according to the
model they shall operate on.

Resource framework EMF provides a resource frame-
work that implements an abstraction layer over con-
crete data representations. Models can be stored in files,
databases or on the network. Tools uniformly access data
via Uniform Resource Identifiers (URIs). This abstrac-
tion allows the integration of tools that use di↵erent
means to store data physically, but that operate con-
ceptually on the same domain concepts. Furthermore,
the resource framework can be used to brigde techni-
cal spaces by, e.g., adaptation as described in [53]. An
example for bridging context-free grammars and object-
oriented modelling is EMFText (cf. Sect. 5). EMFText
extends the EMF resource framework and therefore al-
lows all other DropsBox tools to be applied on textual
artefacts. The resource framework does go even one step
further; it allows referencing elements in models similar
to models as a whole. Thus, tools can reference model
elements without knowing about the concrete structure
of a model. This fine-grained mechanism for addressing
model elements in a uniform way is used by many tools in
the DropsBox tool suite. For example, the FeatureMap-
per tool (cf. Sect. 12) makes heavy use of this property
to connect features with model elements.

Limitations of EMF Besides the properties provided
by EMF, there are some incomplete or missing features
that are important in the context of tool integration.

First, EMF is not entirely programming language in-
dependent. Although the concepts of Ecore and its im-
plementation could be transferred to other languages
(e.g., C#), the support for custom data types (i.e., Java
classes) in Ecore models is a problem when integrating
tools written in di↵erent programming languages. Since
all the DropsBox tools reside in the Java universe, we
did not face this problem directly, but it seems obvious
that industrial integration scenarios will do so.

Second, the integration of metamodels in EMF is re-
stricted to inheritance and delegation. Since the amal-
gamation of tool metamodels is often required to estab-
lish tool interoperability, more flexible means to combine
metamodels are required. For example, a mechanism to
directly extend existing metaclasses (e.g., mixins, roles
or traits) are certainly required to connect existing tool
metamodels.

In summary, we consider the selection of EMF as
tool integration platform a good decision. Other tool-
boxes (e.g., Epsilon [54]) are based on the same founda-
tion and further confirm the feasibility of EMF to build
interconnected tools. We think that the properties men-
tioned above need to be provided by any tool integra-
tion platform. In the following sections we will discuss
how the tools introduced in our toolbox are combined to
implement the AppFlow language. We will discuss the
relation of each tool to EMF and highlight interesting
relations between DropsBox tools enabled by the inte-
gration platform.

5 EMFText

EMFText3 [55] is a tool that can be used to implement
textual concrete syntax for modelling languages and to
generate Eclipse-integrated textual editors for such lan-
guages.

5.1 Background

The initial motivation for the development of EMFText
was to ease the creation of instances of Ecore models.
Existing approaches were the tree editors generated by
EMF and graphical editors built with the Graphical Edi-
ting Framework (GEF) or the Graphical Modeling Frame-
work (GMF). The former were hard to use, because edit-
ing models was slow and cumbersome. The latter re-
quired a lot of e↵ort to be built and were very fragile
when changes were made to metamodels.

To build textual languages, many tools (e.g., parser
generators) were available, but none of them was tightly
integrated with EMF. This was our motivation to de-
sign and implement a syntax specification language that
was both integrated with Ecore and usable to generate
parsers.

Today, EMFText enjoys a wide application in our
and others’ research and in practise. More than 100 lan-
guages are freely available in EMFText’s Syntax Zoo [56].
Most prominently, the syntax for Java (cf. Sect. 15),
OCL (cf. Sect. 7), and some Ontology-related languages
have been developed with EMFText.

Based on an Ecore metamodel, a syntax specifica-
tion can be derived and customised to generate com-
plex tooling for textual languages. This tooling includes
a parser to read models from text files, a printer to se-
rialise models in text format and an Eclipse editor that
provides advanced functionality (e.g., syntax highlight-
ing, hyperlinks, error markers, quick fixes, or an outline
view). To reuse existing technology, the ANother Tool
for Language Recognition (ANTLR) [57] parser gener-
ator was employed to transform the grammar structure
to actual Java code.

3 http://www.emftext.org/

http://www.emftext.org/
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Figure 5 EMFText’s tool generation process.

Figure 5 shows EMFText’s tool generation process.
To create a textual DSL, EMFText requires two central
artefacts—the Ecore metamodel (including a generator
model) and the syntax specification. The latter is defined
using EMFText’s syntax specification language CS and
is stored in a file with the extension .cs.

In its heart, a CS specification contains a context-free
grammar (CFG) in a notation similar to Extended Ba-
ckus Naur Form (EBNF) [58]. Each production in that
CFG specifies the textual representation for exactly one
metaclass. Furthermore, each CS specification contains
token definitions representing the DSL’s terminal sym-
bols that are mainly used to specify the syntax of meta-
class attributes. Other parts in CS specifications allow
to customise code generation and syntax highlighting.

An initial CS specification conforming to the Human
Usable Text Notation (HUTN) [59] standard can be au-
tomatically derived from the metamodel. This specifi-
cation can then be refined according to the needs of the
language designer. Once both a metamodel and a syntax
specification are available, EMFText can generate a set
of Eclipse plug-ins that implement the respective tool-
ing for the language. When the syntax or the metamodel
changes, these plug-ins must be regenerated.

The generated plug-ins include a parser and a lexical
analyser, both derived from the CFG as well as an ad-
vanced printer component which allows the serialisation
of models according to the CFG in a layout preserving
manner. Furthermore, a resource component seamlessly
integrates the generated components with the EMF.

Besides the actual editor component, EMFText gen-
erates several UI components, including preference pages
and wizards.

5.2 Applied on Example

For the running example, we used EMFText to define
textual syntax for the AppFlow language. Based on the
Ecore metamodel of the language, we defined syntax
rules for each concrete metaclass using the CS language.

1 SYNTAXDEF appflow
2 FOR <http://www.emftext.org/language/appflow>
3 START Application
4

5 IMPORTS {
6 screen : <http://www.emftext.org/language/appflow/screenmodel>
7 widget : <http://www.emftext.org/language/appflow/widgets>
8 ...
9 }

10 TOKENS {
11 DEFINE COMMENT $’//’(~(’\n’|’\r’))*$;
12 }
13 TOKENSTYLES {
14 "COMMENT" COLOR #00A000;
15 }
16 RULES {
17 Application ::= "application" name[] statemodel screens*;
18 ....
19 screen.Screen ::= "screen" name[] "{" compounds* "}";
20 widget.Panel ::= "panel" name[] "{" compounds* "}";
21 widget.Button ::= "button" name[] label[’"’,’"’] ";";
22 widget.UIList ::= "list" name[] ";";
23 ...
24 }

Listing 1 Excerpt of the syntax definition.

An excerpt from this syntax specification is shown in
Listing 1.

Here, one can see that the RULES part of the CS lan-
guage is similar to EBNF, but was slightly adapted to be
more usable in the context of syntax definition for meta-
models. The RULES language supports the specification
of keywords (e.g., “button”), as well as terminals (e.g.,
name[]) and non-terminals (e.g., compounds) that refer
to structural features of the metaclass. It does also sup-
port repetition operators (e.g., asterisk, question mark
and plus).

The TOKENS part contains exactly one token defini-
tion for COMMENTS, while all other token definitions are
added by default (e.g., EMFText includes identifiers by
default) or are derived from the specification automati-
cally. In the TOKENSTYLES section, the default colour for
COMMENTS is specified. Note that at runtime this can be
changed in the EMFText editor preference page.

In the IMPORTS section di↵erent namespaces of the
AppFlow language are declared such that metaclasses
within these packages can be uniquely referenced. For
example, Application belongs to the default namespace
while Screen belongs to the screen package and the
remaining rules belong to the widget package.

Presenting all the details about the CS language is
out of the scope of this paper, but they can be found in
the EMFText User Guide, which is available from the
EMFText homepage.

After defining the syntax for the AppFlow language,
we generated tooling to conveniently edit and process
AppFlow models as shown in Fig. 6.

The parser that is generated by EMFText is auto-
matically registered with the EMF resource framework
and thus used by all EMF tools to read textual AppFlow
models. Therefore, arbitrary EMF-based tools—not only
the ones presented in this paper—can handle AppFlow
models. Besides the serialisation functionality and the
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Figure 6 EMFText generated editor with code completion.

generated editor, EMFText does also provide additional
infrastructure code that is commonly required for DSLs.
For example, a so-called builder is generated that is in-
voked whenever AppFlow models change. Builders are
frequently used to compile models (i.e., to automati-
cally derive other artefacts from the modified model).
Also, extension points are generated that allow register-
ing post processors. These can be used to validate models
automatically after loading them.

5.3 Role in DropsBox

EMFText plays a central role in DropsBox. First, it al-
lows us defining new textual modelling languages quickly
(e.g., to build example models that can be processed by
other tools). Moreover, EMFText is heavily used to build
other DropsBox tools. Refactory (cf. Sect. 11) relies on
three modelling languages that were built with EMF-
Text. Dresden OCL (cf. Sect. 7) provides an advanced
OCL editor that was generated by EMFText. JaMoPP
(cf. Sect. 15) relies on code generated by EMFText to
create models from Java source code. Also, LanGems
(cf. Sect. 14) and Reuseware (cf. Sect. 10) employ tex-
tual modelling languages built with EMFText. Besides
EMF itself, EMFText is one of the foundations that al-
most all DropsBox tools rely on.

5.4 Related Tools

A variety of di↵erent tools to specify textual concrete
syntax exists. Xtext [7] and TCS [8] are parser genera-
tors for EMF that are quite similar to EMFText. Monti-
core [9] provides a metamodelling language that supports
an integrated specification of concrete and abstract syn-
tax. Sintaks [10] is a parser generator for the Kermeta
metamodelling language. TEF [11] provides an interpre-
tative approach to concrete syntax implementation using
a Model View Controller (MVC) update strategy. Most
of these tools focus on syntax implementation and are
not contained in a toolbox for supporting the DSL life

cycle in general. Xtext is an exception, as it provides fur-
ther languages to check well-formedness rules for meta-
models, for model transformation and code generation.
For a more detailed comparison we refer to [55] and [60].

6 JastEMF

JastEMF4 [61,62] is a tool that permits the specification
of static semantics of Ecore metamodels using reference
attribute grammars (RAGs). It is used in the implemen-
tation phase of the DSL life cycle.

6.1 Background

Attribute grammars (AGs) [63,64] are a well-known for-
malism to specify the static semantics of context-free
languages. Hence, static program analysis like name and
type analyses are typical applications of AGs. An AG
associates each non-terminal of a given CFG with a set
of synthesised and inherited attributes, which represent
its semantics. Given an AG GAG for a CFG GCFG an
attribute grammar system can be used to generate an at-
tribute evaluator that computes for every possible deriva-
tion tree of GCFG—called abstract syntax tree (AST)
in the following—the value of all the attributes associ-
ated with its non-terminal nodes. Thus, the evaluator
computes the semantics of the AST. The semantics are
specified in attribute equations. For every production p
of GCFG an equation must be given for all the synthe-
sised attributes of the left-hand side non-terminal and
for every inherited attribute of the right-hand side non-
terminals. The equation can depend on any attributes
of the production. Thus, synthesised and inherited at-
tributes represent data-flow up- or downwards an AST,
respectively. By combining synthesised and inherited at-
tributes in equations, arbitrary dependencies between
tree parts can be specified.

Since their first presentation in 1968, the AG for-
malism and evaluation strategies have been steadily ex-
tended and improved, such that AGs nowadays achieve
a good abstraction on the specification level (i.e., conve-
nient specifications) while still supporting e�cient eval-
uators (i.e., high-performance implementations). In gen-
eral, AGs are a good choice for the implementation of
static language semantics of DSLs [65].

One recent attribute grammar system is the JastAdd
metacompiler [66], an object-oriented attribute gram-
mar system based on Java that supports advanced AG
concepts such as reference, collection and circular at-
tributes. Reference attributes [67] provide means to as-
sociate remotely located AST parts with each other, such
that attribute equations can depend on non-local at-
tributes. Thus, reference attributes impose a graph on

4 http://www.jastemf.org/

http://www.jastemf.org/
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Figure 7 JastEMF code generation process.

top of the AST (the abstract syntax graph (ASG)). Col-
lection attributes [68] permit the e�cient specification of
attributes, whose values depend on di↵erent AST parts.
Finally, circular attributes are convenient to specify fix-
point semantics [69]. Especially in combination with ref-
erence attributes, fixpoint semantics ease the computa-
tion of transitive closures, which is often required for
advanced language analysis like dataflow analysis.

Currently, modelling frameworks such as the EMF
are heavily used in DSL development. However, while
being adequate for defining structure, they lack proper
formalisms to specify the computation of semantic val-
ues. Our JastEMF tool unifies the attribute grammar
and the metamodelling worlds to achieve semantics in-
tegrated metamodelling [61]. The basic idea of the ap-
proach is distinguishing syntactic and semantic inter-
face of a metamodel according to the attribute grammar
formalism. The syntactic interface is given by its meta-
classes, inheritance relations, non-derived properties and
containment references, which specify context-free struc-
ture. On the other hand, metamodels usually contain so
called non-containment (i.e., cross) references, derived
properties and operations forming a semantic interface.
Typically, things like reference resolving based on name
analysis, types and closures are declared in this interface.

Figure 7 shows how JastEMF works. Since it is based
on the EMF and the JastAdd metacompiler, it requires
the Ecore and generator model of the language, which
declare the syntactic and semantic interfaces. The ac-
tual AG must be given by a set of JastAdd specifica-
tions. The context-free structure is specified by a Jast-
Add AST specification which has to be equivalent to the
containment hierarchy defined in the Ecore model. Note
that JastEMF can derive the AST specification auto-
matically. Static semantics is specified by a set of Jast-
Add jrag specifications. Each jrag specification contains
a set of semantic aspects consisting of attribute decla-
rations and equations, where each equation is a Java
expression or method body. Given a set of well-formed
specifications, JastEMF triggers the EMF and JastAdd
code generators and integrates the resulting class hier-
archies. The result is a semantics integrated metamodel
implementation. Every method stub the EMF generates
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Figure 8 Semantic interface of the statemodel.

for derived properties, non-containment references and
operations is replaced by its JastAdd evaluator imple-
mentation. For more details on the integration process,
we refer to [61].

6.2 Applied on Example

For the running example, we focus on the StateModel
sub-language of the AppFlow language. We used a RAG
to solve the following problems:

– Specify if a state is an initial or a final state.
– Collect initial and final states in the AST and make

them available at the StateModel root.
– Derive incoming and outgoing transitions of states as

well as their direct predecessors and successors.
– Compute transitive closures.
– Specify if a state is contained in a cycle.
– Compute if the statemodel can terminate, i.e., if a

final state can be reached.

The corresponding parts of the AppFlow metamodel
are shown in Figure 8. Parts of the semantic interface are
coloured in black while others are greyed out. Listing 2
contains the respective attribute declarations in JastAdd
while Listing 3 contains their realisation.

Each State inherits its incoming and outgoing tran-
sitions (fanIn and fanOut) from its parent StateModel.
These attributes are declared being lazy which enables
caching and avoids redundant computations. A reference
to the StateModel root is also passed to each State,
however, it is only a supporting attribute and does not
belong to the semantic interface of the Ecore model. In
the example, we also use collection attributes. Each start
and final State contributes itself to the StateModel’s
startStates or finalStates collection attribute, re-
spectively. The predecessors and successors relations
are directly computed from the fanIn and fanOut at-
tributes by iterating over the Transition lists computed
by these attributes and adding the corresponding States
to the result. Reachable represents the transitive clo-
sure of the successor relation (i.e., it computes the set of
reachable States for a given State). Since this kind of
computation requires fixpoint semantics, reachable is a
circular attribute. Based on it, canTerminate computes
if a final State can be reached from the startState.
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1 aspect Reachability{
2 inh StateModel State.stateModel();
3 coll EList StateModel.startStates()
4 [new BasicEList()] with add;
5 coll EList StateModel.finalStates()
6 [new BasicEList()] with add;
7 syn lazy boolean StateModel.canTerminate();
8

9 inh lazy EList State.fanOut();
10 inh lazy EList State.fanIn();
11 syn lazy EList State.successors();
12 syn lazy EList State.predecessors();
13 syn lazy EList State.reachable()
14 circular [new BasicEList()];
15

16 syn boolean State.isCyclic();
17 syn boolean State.isStartState();
18 syn boolean State.isFinalState();
19 }

Listing 2 Semantic interface in JastAdd.

6.3 Role in DropsBox

JastEMF provides convenient means to specify meta-
model semantics. Thus, any EMF tool requiring com-
plex semantic computations profits from JastEMF. In
the running example all other tools can reuse the seman-
tics JastEMF generated into the metamodel implemen-
tation. Especially tools only concerned about syntax, like
EMFText, conveniently cooperate with JastEMF. Since
the EMFText parser constructs a model M while pars-
ing, the semantics integrated by JastEMF are available
for all the tools that use M .

Similar to AGs, the application area of the OCL is
also static language semantics (e.g., reachability could
also be specified using OCL definitions). Since JastEMF
is based on the JastAdd AG system, its computational
expressiveness is similar to that of the OCL. In fact,
both formalisms are Turing complete and can be used
for simulating a Turing machine by introducing recursive
functions using the def keyword in OCL and via non-
terminal or circular attributes in JastEMF.

However, there are some di↵erences between both ap-
proaches with regard to problem abstraction and their
view on language semantics. AGs are well suited for
specifying computations depending on values distributed
over a model instance. Dataflow can easily be specified
using inherited or synthesised attributes, while reference
attributes are a good choice for specifying derived non-
containment references. Complementary, the OCL as a
functional constraint language is well suited to declare
constraints over model instances in a non-verbose way
and for providing appropriate user feedback. However, as
our experience with OCL indicates, it is not well suited
for computing complex relations from sets of arbitrary
non-local model elements (e.g., elements distributed over
complex, nested block structures).

In Sect. 7, we will use OCL to check additional prop-
erties previously computed by the AG and generate error
markers and warnings that are prompted to the user of
the textual editor generated by EMFText.

1 aspect Reachability{
2 eq State.isCyclic() = reachable().contains(this);
3 eq State.isStartState() = predecessors().size() == 0;
4 eq State.isFinalState () = successors().size() == 0;
5

6 eq State.successors() {...}
7 eq State.predecessors() {...}
8 eq State.reachable() {...}
9

10 eq StateModel.getstates(int index).stateModel() = this;
11 eq StateModel.getstates(int index).fanOut() {...}
12 eq StateModel.getstates(int index).fanIn() {...}
13

14 State contributes this when isStartState()
15 to StateModel.startStates() for stateModel();
16

17 State contributes this when isFinalState()
18 to StateModel.finalStates() for stateModel();
19

20 eq StateModel.canTerminate(){...}
21 }

Listing 3 Excerpt from attribute grammar specification.

6.4 Related Work

We are not aware of any approach that integrates a
metamodelling language like Ecore and AGs. However,
there are several tools that provide a similar approach
to AGs as realised by JastEMF/JastAdd. Silver [13] is a
demand-driven AG system which provides its own func-
tional language for attribute equations and its own parser
generator. As JastAdd, it supports collection, reference
and reference attributes and provides a module system.

Kiama [14] is a library that embeds AG-based lan-
guage processing capabilities into the Scala [70] program-
ming language. Essentially, it provides the same AG fea-
tures as JastAdd. However, in contrast to JastEMF, ab-
stract syntax and attribute equations have to be speci-
fied using Scala features. As a consequence, users have to
take care of AG well-formedness without tool support.

Beyond AGs, several approaches for specifying meta-
model semantics exist. Fujaba [15,16] provides a gra-
phical language for defining rewrite rules on EMF mod-
els and thus can be used to specify static semantics of a
DSL. In [71], Abstract State Machines (ASMs) have been
proposed to specify metamodel semantics using semantic
anchoring. However, while ASMs are good for specify-
ing execution semantics, static semantics is not covered
by the approach. SmartEMF [17] uses Prolog for con-
straint checking of operations on XML files that have
been mapped to an EMF model instance. SmartEMF
also resolves references of weakly coupled DSLs in multi-
ple domains. This is currently not supported by JastEMF.

7 Dresden OCL

Dresden OCL5 [72,73,74] allows developers defining and
editing OCL constraints and queries on di↵erent (meta-)
models and evaluating them on various instances.

5 http://www.dresden-ocl.org/

http://www.dresden-ocl.org/
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Figure 9 WFRs specified in OCL.

7.1 Background

The Object Constraint Language (OCL) [75] is an OMG
standardised language to specify constraints on meta-
models and models using concepts from design by con-
tract [76]. Today, OCL is a well-established constraint
language that is often used in the context of UML as
well as of DSLs.

To support the development of OCL and its applica-
tion in model-driven engineering, we implemented Dres-
den OCL—a toolkit for parsing and evaluating OCL
on models of various technical spaces. Dresden OCL is
based on Eclipse/EMF but supports the parsing of OCL
constraints defined on EMF and UML models as well
as Java and XSD files. OCL can be evaluated by either
using the Dresden OCL interpreter for various techni-
cal spaces [74] or by using the Dresden OCL AspectJ/-
Java and SQL compilers [77]. Dresden OCL has been
integrated into multiple modelling tools including Ar-
goUML6 and MagicDraw UML7. Dresden OCL is al-
ready well tested using more than 3500 JUnit test cases
as well as multiple case studies [74,78].

7.2 Applied on Example

In the context of the DSL life cycle introduced in Sect. 2,
Dresden OCL can be used in the implementation and ap-
plication phases. During implementation, well-formed-
ness rules (WFRs) can be defined on the language’s
metamodel that are later evaluated for instances of the
language. Alternatively, for DSLs being modelling lan-
guages themselves, Dresden OCL can be applied during
the application phase (e.g., the AppFlow could be ex-
tended to define OCL conditions on transitions between
di↵erent states). However, in the AppFlow example pre-
sented here, Dresden OCL is used during the implemen-
tation phase to define and evaluate WFRs on top of

6 http://argouml.tigris.org/
7 http://www.magicdraw.com/

Figure 10 WFR evaluation on the AppFlow example.

the AppFlow metamodel. For example, each StateModel
must have exactly one initial State and at least one fi-
nite State. Whether States can be considered as initial
or finite could be expressed using OCL, but JastEMF
already provides derived attributes containing this in-
formation (cf. Sect. 6) and therefore, they can be reused
within the OCL constraints. Figure 9 shows some OCL
statements. Besides the invariants checking for the right
quantity of initial and final states (lines 3–7) it is ensured
that every Nameable element has a non-empty name
(lines 9–10) and that such names are unique within a
StateModel (lines 12–15).

Dresden OCL allows the parsing of OCL constraints
defined on Ecore models, thus no further e↵ort is neces-
sary to define constraints on the AppFlow metamodel.
The AppFlow metamodel can be imported as a model
into Dresden OCL and OCL WFRs can be parsed. The
integration of the OCL WFRs within the AppFlow lan-
guage is rather simple. EMFText provides the possibility
to implement postprocessors that can be used to modify
or check parsed models. Such a postprocessor has been
implemented which uses the parser and interpreter of
Dresden OCL to parse the WFRs on the AppFlow meta-
model and verify them against parsed AppFlow models.
If a WFR is violated, an error message is created and
displayed within the AppFlow editor (cf. Fig. 10).

7.3 Role in DropsBox

Within DropsBox, Dresden OCL currently uses the tool-
ing provided by EMFText (cf. Sect. 5), as the OCL
Parser/Editor of Dresden OCL was built using EMFText
and can be considered as one of the biggest case stud-
ies evaluating the capabilities of EMFText. Refactorings
have been added to the Dresden OCL Editor (e.g., re-
name or extract definition) using Refactory (cf. Sect. 11).
Besides, Dresden OCL can reuse attribute values com-
puted by JastEMF (cf. Sect. 6), as shown in the AppFlow
example. Furthermore, OCL has been integrated into

http://argouml.tigris.org/
http://www.magicdraw.com/
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other tools of DropsBox. Reuseware (cf. Sect. 10) inte-
grates OCL into its specification languages. FeatureMap-
per (cf. Sect. 12) uses an extended version of OCL to
check the well-formedness of members of software prod-
uct lines.

7.4 Related Tools

Besides Dresden OCL, a large amount of other OCL
tools exist. The most popular ones are shortly outlined
below. The most widely used OCL tool today is Eclipse
(MDT) OCL [18]. It provides parsing and interpretation
capabilities for EMF and UML, but no OCL compilers.
Another popular OCL tool is USE that supports pars-
ing and interpretation of OCL constraints on a subset of
UML [19]. USE is not based on EMF but uses its own
metamodel that can be considered as a subset of UML.
SQUAM OCL focuses on extending OCL with library
and unit testing support [20]. It is built as an extension
of other OCL tools, supporting reuse of both Dresden
OCL and Eclipse OCL. A list of further OCL tools and
a comparison of them can be found in [18].

8 DEFT

DEFT8 [79,80] stands for “Development Environment
For Tutorials”. It is a tool for the creation and mainte-
nance of external software documentation. As such it is
part of the deployment phase and the application phase
of the DSL life cycle.

8.1 Background

External software documentation is documentation which
is not directly attached to software fragments, for ex-
ample programming tutorials, architectural overviews or
end-user documentation. It consists to a great degree of
running text, which is interspersed with figures, such as
code listings or images of model diagrams.

Usually, software continues to evolve after documen-
tation is written. Hence, to keep up with the changes,
documentation has to evolve, too. However, keeping ex-
ternal documentation synchronised with the software is
tedious and error-prone and should be supported by ap-
propriate tooling. A generative approach that derives the
final document(s) from a set of specifications and mod-
elling artefacts can help here. Often, the generation is
driven by templates which determine structure and lay-
out of the generated documentation. Hence, if a software
artefact is modified, the documentation can be easily re-
generated. However, there are some problems with this
approach. Often it would be useful to add textual expla-
nations to the generated documentation (e.g., describing

8 http://deftproject.org/

figures, explaining tutorial steps, etc.). Since these expla-
nations are not part of the original templates, they will
be lost if the document is regenerated and, thus, have to
be added manually again.

To overcome this problem for source code documen-
tation, the paradigm Elucidative Programming [81] has
been introduced. Documentation is mainly text written
manually which is meant to be interspersed with code
listings or hyperlinks to source code. These code listings
or hyperlinks are not directly included in the documenta-
tion, though. A placeholder reference pointing to a spe-
cific code fragment (e.g., a method) is added instead. In
a subsequent rendering step, the references are replaced
by hyperlinks or by code listings, respectively. If the doc-
umentation has to be regenerated only the references are
reevaluated while the explanatory text is left untouched.

In order to reference specific parts of code, Elucida-
tive Programming environments are language-specific.
This hampered reuse of previous tools. DEFT extends
the Elucidative Programming approach in various ways:

1. Besides plain source code, DEFT works with any
kind of structured data (e.g., models, ontologies, for-
malised requirements). For each type of artefact, a
number of rendering transformations generate repre-
sentations that can be displayed in a document. For
example, source code can be represented by code list-
ings with styled text, indentation and syntax high-
lighting. Models and ontologies can be represented
as bitmaps, vector graphics, or as tables listing var-
ious attributes. Relationships between requirements
in formalised requirement models can be represented
as a traceability matrix.

2. DEFT provides an integrated environment for docu-
mentation writing and maintenance. There are var-
ious integrated editors, such as OpenO�ce, the Vi-
sual Editor for XML (VEX), or the LaTeX editor
Texlipse. The editors display generated artefact rep-
resentations instead of the plain references. This com-
prises both WYSIWYG (“What You See Is What
You Get”), such as in OpenO�ce, and markup, such
as in Texlipse. Therefore, the documentation author
is not burdened with special syntax of the references,
as in normal template generation approaches.

3. DEFT supports hot update of documentation. When
documented software artefacts are modified, the doc-
umentation is immediately updated. This is achieved
by the reevaluation of all a↵ected references and the
insertion of the newly generated representations into
the document. This lets the documentation writer al-
ways see an up-to-date version of the documentation.

http://deftproject.org/
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Figure 11 Screenshot of DEFT with embedded text and two generated model representations.

8.2 Applied on Example

For our running example, DEFT has been prepared to
deal with the AppFlow language. Since support for EMF-
Text is already included, adding a new EMFText-based
DSL has been a matter of minutes.

DEFT can be applied in the AppFlow example in two
ways. First, a tutorial helps new AppFlow users getting
familiar with the language. Explanations which are easy
to understand together with examples greatly reduce the
training e↵ort and lead to a better confidence in DSL
usage. This case belongs to the deployment phase of the
DSL life cycle.

Second, system documentation is helpful for future
developers of a system because it can provide an overview
which parts of the GUI were created from which models,
and what the concrete specifications look like. The writ-
ing of system documentation belongs to the application
phase of the DSL life cycle.

Figure 11 shows a screenshot of DEFT, displaying
a code listing and a tree representation of an AppFlow
model side by side. Unlike plain text, the code listing
and image of the tree representation are not physically
embedded in the documentation but referenced and ren-
dered as images. The following steps have been per-
formed to create the documentation.

1. First the AppFlow file has been imported into the
DEFT repository.

2. Then a document was created in the repository and
documentation text was written into the document.

3. Afterwards two references to the AppFlow file were
inserted into the document. The references have been

parameterised with a GUI wizard to control the final
appearance of the model in the documentation. For
example, in the case of the textual model description
it was possible to select only excerpts that should be
added to the documentation, or to define the font
size. For the model tree it was specified which nodes
should be expanded and collapsed.

4. The references were then hidden and the generated
representations were displayed immediately, namely
styled text for the code listing and an image for the
model tree. This relieved the author from dealing
with the complex internal format of the references.

The location of the original models is stored in the
repository along with the copies of the content. Thus, it
is easy to detect when an artefact has been modified or
removed. If such a change or removal is found, the docu-
mentation writer is informed and can choose whether to
update the repository. After updating, all artefact rep-
resentations will be recomputed from the new versions
of the artefacts in the repository. If artefacts have been
modified in complex ways, the resulting representations
may di↵er from the writer’s intention. If artefacts have
been deleted, it is not possible to compute a representa-
tion at all. Hence it is necessary to check the documen-
tation for correctness. Therefore, an overview of all arte-
fact references in the documentation which are a↵ected
by the update is presented. This way, a manual search
for defective parts in the documentation is avoided.

However, the running text is not explicitly consid-
ered. Therefore, it is advisable to have figures and ex-
planatory text close to each other. In this case, it is suf-
ficient to check if the text in the proximity of changed
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Figure 12 State chart to handle feature requests.

figures or cross references to these figures is still consis-
tent and to update it if necessary.

8.3 Role in DropsBox

DEFT is a tool for the generation and maintenance of
documentation which can be partly generated. It can
generate representations for a variety of software arte-
facts, most notably Java source code, Ecore models and
EMFText-based DSLs, including the AppFlow language
and OCL. DEFT reuses parts from the generated EMF-
Text plug-ins to derive artefact representations. For ex-
ample, the syntax highlighting component in the DSL
editor is reused to render the syntax highlighting for
code representation. The TreeViewer of the EMFText
outline, which is used to display the model’s structure,
is reused to create image representations.

8.4 Related Tools

GenDoc [21] is a template-based documentation tool for
UML diagrams made with the Topcased UML editor. It
can generate MS Word and OpenO�ce documentation.

Intent [22] is a new Eclipse documentation project
which has been inspired by Literate Programming [82].
It enables the documentation of many software artefacts
with the help of a special documentation language. The
documented artefacts are automatically transformed into
EMF models where constraints can be checked.

9 MDPE Workbench

The model-driven performance engineering (MDPE)9

workbench [83] is a tool that allows the extension of
arbitrary process modelling tools with functionality for
performance engineering. It can be used to check perfor-
mance requirements and to detect performance bottle-
necks in process models.

9.1 Background

In the case of applying performance engineering in the
process modelling domain, performance models are most-
ly created manually from process models by using spe-
cific performance analysis tools. Such an approach im-
plies additional e↵ort and costs due to manual creation
of performance models as well as due to model changes,
which either are a result of a performance analysis or a
result of an extension of the process model.

The central motivation behind MDPE is to bridge
the gap between the process modelling domain and the
performance engineering domain. This means that per-
formance analyses are applied directly on process mod-
els, which are created by domain experts. Performance
models are derived from annotated process models in
an automatic manner. These performance models are
analysed and the results are returned as performance

9 http://www.mdpe.org/

http://www.mdpe.org/
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feedback directly into the original process development
environment.

In MDPE, the process modelling and the performance
engineering domains are bridged by providing a so-called
tool-independent performance model (TIPM) [84] and
applying model transformation and tracing techniques.
A TIPM is independent from any modelling language as
well as from any performance analysis tool. It is gener-
ated from a process model, which is annotated with ad-
ditional performance data (e.g., execution times, branch
probabilities, resource demands). In a second step a so-
called tool-specific performance model (TSPM) is gen-
erated from the TIPM. The TSPM can be executed or
interpreted directly by external analysis tools like Any-
Logic [85]. Both transformation steps are implemented
as model-to-model transformations by using the ATLAS
transformation language (ATL) [86]. Tracing techniques
are used to propagate analysis results back to the original
process model. Technically, this is realised by using trace
models [87] based on a model weaving approach [88].

9.2 Applied on Example

In the context of the project management example, we
assume that the AppFlow language is used to develop
user interfaces for a business process (e.g., a BPMN pro-
cess) responsible for managing feature requests of cus-
tomers. AppFlow applications are associated with man-
ual tasks of the business process. MDPE can help to
identify execution times of single process tasks by cap-
turing performance data in AppFlow applications and
executing performance analyses. For instance, in case
of an increased workload of the process due to a new
project, performance analyses can be used to detect per-
formance bottlenecks in participating departments of the
process. Thus the MDPE workbench is applied to the
AppFlow during the application phase of the DSL life
cycle as outlined in Sect. 2.

Figure 12 shows the MDPE workbench. The App-
Flow editor shows the state chart of the application for
the process task to handle new feature requests from
customers. Requests are reviewed by a project manager,
who is responsible to create and assign tickets. The man-
ager is able to show (idle) and check received feature
requests from customers (checkFeatureRequest). Each
request can be accepted (accept) or rejected (reject).
In case of accepted feature requests, the manager has
to create a ticket (ticketCreation). Furthermore, the
manager must create a notification message for the cus-
tomer (createCustomerNotification), which is sent au-
tomatically (notify). To analyse the end-to-end execu-
tion time for the complete task to handle a feature re-
quest, performance data (e.g., execution times) for states
with human interaction and transitions need to be an-
notated to AppFlow model elements. Performance data
can, for instance, be estimated, captured through exper-
iments, or collected based on monitoring data.

Technically, the performance data is annotated by
using the MDPE Viewer, which is shown in the lower
left part of Fig. 12. It shows annotated resource de-
mands for the ticketCreation state, which is executed
by a resource User. The properties view shows that this
state has an execution time of 15 minutes for each fea-
ture request. It has to be noted that multiple periods
with di↵erent performance data can be defined to spec-
ify data in a fine-grained manner. States with more than
one outgoing transition (e.g., the outgoing transitions of
checkFeatureRequests) require that each transition is
annotated with a branch probability. Initial states must
be annotated with a workload description.

After appropriate performance data was defined, the
analysis can be issued, which means that a TIPM and
a TSPM model are generated. The TSPM is simulated
and the feedback is presented in the MDPE viewer. In
the example, this is the mean end-to-end execution time
to handle new feature requests.

9.3 Role in DropsBox

The MDPEWorkbench works with EMF-based languages.
So far, our tool provides adapters for MARTE-annotated [89]
UML activities and a more flexible approach by using an-
notation models. While MARTE is limited to UML, an-
notation models can be adapted to arbitrary languages
like AppFlow. MDPE can be combined with Reuseware
(cf. Sect. 10) for analysing the performance of composed
process models. Picus (cf. Sect. 13) can be used to search
process models and corresponding performance data an-
notations for di↵erent analysis scenarios.

9.4 Related Tools

Another tool allowing model-driven performance analy-
sis is PUMA [23,24]. It uses an exchange format similar
to our TIPM but does not support feedback propaga-
tion from performance analysis. The SPMDA approach
is another approach similar to MDPE [25].

10 Reuseware Composition Framework

The Reuseware Composition Framework10 [90,91,92] is
a tool to develop component support for arbitrary EMF-
based DSLs.

10.1 Background

Building software out of components has been a con-
cern in software engineering for a long time. To enable
component-based development, the languages used in

10 http://www.reuseware.org/

http://www.reuseware.org/
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Figure 13 Metamodel extension for AppFlow import fea-
ture.

development usually have a certain built-in component
support (e.g., concepts like classes, objects, or packages).
The collection of these concepts is also called the com-
ponent model of the language. Furthermore, languages
need to incorporate a composition language that allows
the definition of systems in terms of compositions of com-
ponents (e.g., concepts like an import construct).

In the context of MDSD and DSM, new DSLs are
constantly built and thus new component models and
composition languages for these DSLs are required to re-
tain the benefits of component-based development. Thus,
we developed the Reuseware tool to specify component
models and composition languages on the basis of Ecore-
based metamodels. These specifications are used by Re-
useware’s generic tooling. This way, a DSL can be en-
riched with component support without the need to man-
ually implement composition tooling for each new DSL
individually. Reuseware is itself developed model-driven
using EMF for its internal metamodels, Fujaba’s story-
driven modelling [15,93] to define composition seman-
tics, and EMFText (cf. Sect. 5) to realise the editors for
its specification languages (cf. [94] for details). Further-
more, it integrates OCL in its specification languages (cf.
Sect. 7).

Reuseware is mainly applied during language appli-
cation time and supports dynamic loading and reloading
of component models and composition language specifi-
cations. Altering language implementation artefacts such
as metamodels or syntax specifications is not required.
The specifications in Reuseware are defined based on
an Ecore metamodel and describe what components are
in the corresponding DSL and how they are composed.
Users of that DSL can utilise this component support to
define and reuse components in the DSL. These are com-
posed by a generic composition engine that merges mod-
els to a composed model that can be further processed
by other tools. This way, composition is implemented as
a preprocessor and has not to be handled during model
interpretation or code generation. Note that Reuseware
is a generic model composition tool and does by itself
not specifically support metamodel composition for tool
integration as discussed in Sect. 4. For this, where a pre-
processor composition approach is not feasible, LanGems
(Sect. 14) should be used.

1 START ScreenTemplate
2

3 RULES {
4 ScreenTemplate ::= "template" screen;
5 ScreenImport ::= "import" id[’<’,’>’] "as" name[]
6 ("(" settings ("," settings)* ")")? ";";
7 ParameterSetting ::= parameter[] "=" value[’"’,’"’];
8 }

Listing 4 Syntax extension for AppFlow import feature.

10.2 Applied on Example

In the following, we demonstrate how import functional-
ity is added to the AppFlow DSL which can be used to
write reusable AppFlow components and compose them
to new AppFlow models. Concretely, we add support to
define templates for screens. These are screens with pa-
rameters defined independently of an AppFlow model
that can be configured and reused in di↵erent AppFlow
models. This is only one example of adding component
support. Other modularity concepts for AppFlow or other
DSLs can be realised with Reuseware. Examples of such
include: reusable UML activity diagrams [90], aspects
for UML and Java [90], and import mechanisms for rule
languages [91].

In our example, we first extend the metamodel and
the syntax of AppFlow with specific constructs to define
templates and importing templates. As stated, Reuse-
ware does not enforce such adjustments. Instead of ex-
tending a language syntax, one may also employ naming
conventions or features such as annotations that are al-
ready included in the DSL. The interpretation of the new
AppFlow constructs is defined afterwards with Reuse-
ware. Figure 13 shows the extension of the AppFlow
metamodel (cf. Fig. 2) with the metaclasses Screen-
Template, ScreenImport, and ParameterSetting. The
corresponding extension for the text syntax is shown in
Listing 4 (cf. Listing 1).

With the extension, we introduce two new concepts
into AppFlow. First, one can define screens indepen-
dently of applications in template screens. Figure 14
shows such a template that uses the extended syntax,
which provides the <<parameter>> notation to define
parameters in texts. In the example, this is used in lines
2 and 4 to define the parameters <<name>> and <<pwd>>
that are replaced by concrete texts displayed in front of
the input fields when the template is reused in an App-
Flow model.

Second, one can define imports and configurations
of template screens inside an AppFlow model as for ex-
ample shown in Fig. 15. There, the login template from
Fig. 14 is imported and the parameters are bound to the
values Project Manager Name and Password. Reuseware
can now expand the import to the imported template
screen and bind the parameter in this template by re-
placing the parameters with the corresponding values.
In the case of the example, lines 30–36 of the model of
Figure 3 are the result of the composition.
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Figure 14 Template screen for a login dialogue.

Figure 15 The login template (cf. Fig. 14) imported and
configured in an AppFlow model.

In order to perform this composition of AppFlow
models, Reuseware requires knowledge about the compo-
sition semantics of ScreenTemplate and ScreenImport.
This is defined in terms of a component model and a
composition language specification. The component mo-
del expresses that a ScreenTemplate is a reusable com-
ponent and that strings are replaceable parameters if
they contain a <<parameter>> value. This is done on the
basis of the metamodel. For example, specifying Screen-
Import is hook means that elements of type Screen-
Import may be replaced during composition. The com-
position language defines that such a replacement is trig-
gered by a ScreenImport. Concretely, it is defined that
a ScreenImport is replaced with the Screen defined in a
ScreenTemplate with the ID given in the ScreenImport
to replace. This is expressed by ScreenImport {id =
$self.id.split(’/’)$}. For details of component model
and composition language specification consult [92].

The example in this section can only indicate the
power of Reuseware’s composition features. The com-
ponent model and composition language specification
formalisms give the tool developer capabilities to intro-
duce support for arbitrary modularity concepts on top
of EMF-based DSLs. This includes cross-cutting modu-
larity concepts such as aspects. Component support can
also span multiple DSLs in combination. For example,
the language in which components are defined (for which
a component model is specified) can be di↵erent from
the composition language. For more examples refer to
the webpage and to [95,96,97].

10.3 Role in DropsBox

While none of the other DropsBox tools directly requires
Reuseware, it can be combined with all of them. An im-
portant property of model composition with Reuseware
is that composed models do not include any composi-
tion related elements (screen imports in the example).
Thus, the composition is performed transparently as a
preprocessing step and other tools can work on the com-

posed models and do not have to know about composi-
tion related model elements. Dresden OCL (cf. Sect. 7)
and MDPE (cf. Sect. 9) can thus do analysis on mod-
els composed with Reuseware without further adjust-
ments. Model components can be searched for with Picus
(cf. Sect. 13) and documented with DEFT (cf. Sect. 8).
The FeatureMapper (cf. Sect. 12), can be used to cre-
ate di↵erent variants of a composition. With the help
of JaMoPP (cf. Sect. 15), Reuseware can compose Java
source code.

10.4 Related Tools

The distinct properties of Reuseware are that it can be
used with arbitrary DSLs, that it supports a large variety
of di↵erent component types, and that it can be utilised
without altering a DSL’s implementation artefacts, if
not possible or not desired. A number of tools and ap-
proaches that follow similar goals as Reuseware exist
in Aspect-Oriented (AO) Software Development and re-
lated fields. Many of those are, however, restricted to
specific languages or DSLs with specific properties. The
approaches most closely related to Reuseware in terms
of goals and functionality are: Kompose [26] that can
also be used with arbitrary DSLs, but does not support
the definition of new composition language constructs;
GeKo [27], which is DSL-agnostic, but is oriented to-
wards AO component types and does not support a sep-
aration of component model and composition language;
GenAWeave [28], which can be applied to di↵erent DSLs,
but is as well oriented towards AO component types; and
MATA [29], which can conceptually be transferred to
di↵erent DSLs, but is UML-oriented on the tooling side
(which means that supporting new DSLs required im-
plementation e↵ort). For a detailed comparison of these
and more related approaches consult [97, Chap. 10].

11 Refactory

Refactory11 [98] is a framework for the specification of
generic model refactorings which can be reused for arbi-
trary EMF-based languages.

11.1 Background

The term refactoring means the restructuring of exist-
ing code to improve its design while preserving its se-
mantics [99]. This technique originates from the world
of programming languages and, thus, is widely exam-
ined, accepted and used to reduce code complexity and
coupling [100].

In MDSD, models instead of code are the primary
artefacts used in the development process. In the previ-
ous sections, we already discussed tools to conveniently

11 http://www.modelrefactoring.org/

http://www.modelrefactoring.org/
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specify syntax and semantics for custom modelling lan-
guages. As a result of this progress in metamodelling
more and more modelling languages arise and improv-
ing the design of models becomes more and more impor-
tant [98]. In that sense, refactorings can be invoked in the
application phase of a DSL, since it facilitates restruc-
turing of instances, or they contribute to the evolution
phase of the DSL itself when applying refactorings to
the metamodel. This motivated us to develop a generic
refactoring framework for modelling languages.

Since we are faced with a large amount of modelling
languages, model refactorings should be specified gener-
ically, which fosters reuse and ensures that they are not
redefined again for each metamodel [101]. For example,
the core transformation steps of a rename refactoring
are the same in di↵erent metamodels if considered from
a more abstract point of view.

For this purpose we introduced a novel approach of
role-based generic model refactoring in [98]. The role
concept originates from [102,103] where roles and col-
laborations between them are used to define di↵erent
contexts for objects in a software system. This approach
enables the reuse of the structure and the transforma-
tion steps by specifying the participating elements of a
model refactoring as roles and defining the transforma-
tion based on that roles.

The approach was implemented in Refactory by in-
troducing three new languages to specify and activate
model refactorings in the metamodel of choice. Those
languages are described in the following.

First, the refactoring designer has to define a generic
refactoring by defining a role model which specifies a
dedicated context for a certain model refactoring. The
context contains the participating elements and the col-
laborations between them. These collaborations are the
basis for navigating between the objects playing the cor-
responding roles while executing the transformation.

Second, the refactoring designer has to define a refac-
toring specification in which the concrete restructuring
steps are specified. Those steps are only based on the
previously defined roles. Thus, they are completely in-
dependent of the target metamodels. These two models
constitute a generic model refactoring.

Third, the domain expert must map the defined roles
and collaborations to concrete metaclasses and relations
in a role mapping. Furthermore, such a mapping contains
a name for this concrete model refactoring. Thus, in ad-
dition to the already mentioned application and evolu-
tion phases refactorings are executed in, they are made
available in the implementation phase when role models
are mapped to the metamodel of the DSL. Additionally,
the formalism of role models enables Refactory to recom-
mend possible role mappings to the domain expert which
facilitates the process of specifying them manually [104].

Refactory is based on EMF and completely integrated
into the Eclipse Language Toolkit [105]. As a result,

Figure 16 Example screen before refactoring.

model refactorings are natively embedded with Eclipse
tooling and can be easily accessed by AppFlow users.

11.2 Applied on Example

As mentioned in Sect. 3, our AppFlow example instance
contains a state model defining all states of the appli-
cation and several screens referred by the states. A first
model refactoring we implemented relates to the wid-
gets being arranged on a screen. See, e.g., the screen
projectdetails in Fig. 16. It contains a heading, two
text fields and two lists. From a conceptual point of
view, heading, name and projectMembers are more gen-
eral information on this screen while numberOfFiles and
files go into detail because they are intended to display
information regarding the concrete content of the project
repository. To visually separate general from detailed in-
formation, the domain expert could now manually create
a new panel and move, e.g., the project files describing
text field and list into the newly created panel.

We consider this screen restructuring a refactoring
because widgets are only regrouped and no information
is added or removed. In the context of AppFlow this
modification is semantic preserving.

In consequence, we reused a model refactoring which
was specified with Refactory for purposes when some
model elements are intended to be moved into a new con-
tainer element. This generic refactoring is called Extract

X with Reference Class

12 and was inspired by the Ex-

tract Method refactoring known from programming lan-
guages. As mentioned above, the domain expert only has
to map the roles of a generic refactoring to metaclasses
in the desired metamodel. In the case of AppFlow, List-
ing 5 shows the corresponding mapping.

One can see that the concrete refactoring’s name is
Encapsulate in Panel, and, more important, that role
Extract corresponds to any widget and the role New-
Container corresponds to Panel. The new panel needs a
name, which is why the role attribute newName is mapped
to the attribute name of the metaclass Panel. Both roles
OrigContainer and ContainerContainer are mapped

12 Details about our generic model refactorings can be found
under http://www.modelrefactoring.org/catalogue/.

http://www.modelrefactoring.org/catalogue/
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1 ROLEMODELMAPPING FOR <http://www.emftext.org/language/appflow>
2

3 "Encapsulate In Panel" maps <ExtractXwithReferenceClass> {
4

5 Extract := screenmodel.Widget;
6

7 NewContainer := widgets.Panel(newName -> name){
8 moved := compounds;
9 };

10

11 OrigContainer := screenmodel.Composite {
12 extracts := compounds;
13 };
14

15 ContainerContainer := screenmodel.Composite {
16 source := compounds;
17 target := compounds;
18 };
19 }

Listing 5 Role mapping Encapsulate In Panel.

to the metaclass Composite because only composites are
intended to contain children. Since the name of the re-
lation from Composite to its subwidgets is compounds
(cf. Fig. 2), the collaborations extracts, source and
target are mapped to it.

After specifying the mapping, a context menu entry
for the refactoring is available in the generated AppFlow
text editor. To invoke this refactoring, a user of the App-
Flow language only needs to select the widgets intended
to be moved and open the refactoring menu with a right-
click on the selection. The result of Encapsulate in Panel

for the file widgets can be seen in Fig. 17.

In addition to Encapsulate in Panel we defined two
more model refactorings for the AppFlow language. First,
the well-known Rename refactoring was applied to our
language. This is a simple refactoring with large impact.
If a nameable element is renamed, all references are up-
dated automatically. With help of this refactoring the
user has not to correct the invalid referring names man-
ually anymore.

The last model refactoring we provided to the App-
Flow language relates to a missing initial state which
can be identified and signalled to the user as described
in Sect. 7. In case of a missing initial state, the state
model is not well-formed and the AppFlow user has to
decide which state to choose as first reachable from an
initial state. Although the behaviour of the state model
will be modified, this restructuring is considered a refac-
toring because the user knows exactly beforehand which
semantics are changed [106]. This refactoring is called
Create Initial State and creates a state as predecessor
of a selected state in the state model. Next to the newly
created state a transition is added as well having the new
initial state as source and the selected state as target.

All the described model refactorings can be invoked
both in the generated text editor and the EMF generated
tree editor. Furthermore, editor connectors for GMF ed-
itors, enabling refactorings for graphical editors, and for
Xtext [7] editors exist.

Figure 17 Example screen after refactoring.

11.3 Role in DropsBox

Refactory itself consists of three metamodels (role model,
refactoring specification, role mapping) which are used
to define one of the specification models as described
in Sect. 11.1. To facilitate the definition process, a tex-
tual syntax was specified with EMFText (cf. Sect. 5) for
each of the three metamodels. In return, to enable model
refactorings in EMFText generated editors, Refactory
provides an editor connector determining the model ele-
ments of the current selection on which a refactoring can
be invoked.

Furthermore, Refactory was used to define some mo-
del refactorings for the model-based parser and printer
JaMoPP (cf. Sect. 15). The benefit of this is that Java
source code now can be handled as model and the Java

modeller has not only a generated text editor available,
but refactorings can be invoked in the same manner as
known from the Eclipse Java Development Tools (JDT).

As indicated in a survey discussed in [107], refac-
toring support should be a mandatory feature in devel-
opment environments for OCL. For this reason we im-
plemented a couple of OCL refactorings with Refactory,
such as renamings or extracting a variable from an ex-
pression and replacing all occurrences.

Finally, two model refactorings have been mapped to
the metamodel of the FeatureMapper. First, the renam-
ing of all feature model elements having a name can be
invoked, and second, a constraint can be derived from se-
lected features. For more details about the FeatureMap-
per, refer to Sect. 12.

11.4 Related Tools

In the scope of Eclipse-related refactoring tools being
able to refactor models we refer to EWL as part of the
Epsilon language family [30], EMF Refactor enabling
model refactoring based on graph transformation [31],
and the Operation Recorder supporting the creation of
model refactorings by example [32]. In contrast to Refac-
tory, none of these tools support generic definition of
model refactorings. Another generic approach is intro-
duced in [33]. The transformations are specified with
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Figure 18 FeatureMapper with features mapped to parts of the example user interface specification.

Kermeta on top of a unifying metamodel called Gener-
icMT. This approach is similar to ours but lacks flex-
ibility because once the metamodel of the target DSL
is mapped to GenericMT its not possible to map the
same generic refactoring to another di↵erent structure
of that metamodel. In contrast to this, Refactory allows
for mapping one role model to di↵erent structures in the
same metamodel and hence is more flexible. An in-depth
discussion of related work can be found in [98].

12 FeatureMapper

FeatureMapper13 [108,109] is an Eclipse-based tool ap-
proach that combines MDSD and software product line
engineering (SPLE) [110].

12.1 Background

A software product line (SPL) contains a set of software-
intensive systems sharing a common, managed set of fea-
tures that satisfy the specific needs of a particular mar-
ket segment or mission and that are developed from a
common set of core assets in a prescribed way [110]. In

13 http://featuremapper.org/

addition to the shared core assets, every member of an
SPL has features that are specific to it and that are not
shared by all other products of the SPL. To express this
variability, the di↵erent features available in an SPL and
their interdependencies are being described via variabil-
ity modelling. Variability modelling resides in the prob-
lem space whereas the realisation of features is part of
the solution space [111]. To instantiate products from an
SPL, feature realisations in the solution space have to be
configured according to the presence of the features in
a variant model, that is, a concrete selection of features
from a variability model that describes a product of the
SPL. This requires a mapping between variability model
features and solution space models or modelling artefacts
that realise the features (or combinations of those).

FeatureMapper allows for mapping features from vari-
ability models to arbitrary modelling artefacts that are
expressed by means of an Ecore-based language [5]. These
languages include UML [112], DSLs defined using EMF,
and textual languages that are described using EMF-
Text (cf. Sect. 5). The mappings can be used to steer
the product instantiation process by allowing the auto-
matic removal of modelling artefacts that are not part
of a selected variant from the final product being gener-
ated.

http://featuremapper.org/
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Figure 19 Workflow for defining an SPL and deriving a
concrete product with FeatureMapper.

An overview of defining an SPL and deriving a con-
crete product in FeatureMapper is shown in Fig. 19.
To associate features or logical combinations of features
with modelling artefacts, the developer first selects the
feature expression in FeatureMapper and the modelling
artefacts in a modelling editor. Next, the feature expres-
sion is applied to the modelling artefacts via the Fea-
tureMapper user interface (Step 1). During product der-
ivation, this mapping is interpreted by a FeatureMapper
transformation component. Depending on the result of
evaluating the feature expression against the set of fea-
tures selected in the variant (Step 2), the modelling ele-
ments are preserved or removed from the model (Step 3).
Model elements that are not mapped to a specific fea-
ture expression are considered to be part of the core of
the product line, that is, elements that exist in all mem-
bers, and are always preserved. In addition to product
derivation, the mappings are used for visualisation pur-
poses [109].

12.2 Applied on Example

The example is specified using the AppFlow language.
Since FeatureMapper directly supports mapping features
from variability models to EMFText-based languages,
we applied FeatureMapper on the AppFlow example to
realise variability with respect to navigation and screen
contents. For this, we defined a simple variability model
in terms of a feature model [34,113]. The feature model
depicted in Fig. 20 specifies the Help feature and the
Login feature as being optional. Furthermore, the Login
feature consists of two alternative authentication mech-
anisms. We mapped the di↵erent authentication mecha-
nisms to the implementation of the JavaAction that is
associated with the checklogin state. That is, optional
parts of the mapping address the AppFlow specification
while the alternative parts address the Java implemen-
tation where FeatureMapper and JaMoPP (cf. Sect. 15)
play nicely together. Figure 18 depicts an excerpt of the
user interface specification of the ProjectCockpit ex-
ample with the features mapped to the respective parts
of the specification.

Project
Cockpit

Help Login

Password Fingerprint

Figure 20 Feature model capturing the variability in the
example SPL.

12.3 Role in DropsBox

FeatureMapper is a tool that works on top of the core
services in DropsBox. It can be used with arbitrary EMF-
based languages and, thus, can realise variability for in-
stances of all languages in DropsBox; regardless of wheth-
er it is a metamodelling or a modelling language.

12.4 Related Tools

Related tools and approaches to FeatureMapper are the
model templates by Czarnecki et al. [34] which provide
mappings from features to UML artefacts by means of
symbolic feature names in UML stereotypes. Feature-
Mapper goes beyond this work by supporting arbitrary
EMF-based languages (including UML). CIDE by Käst-
ner [35] was developed almost in parallel to FeatureMap-
per and provides means for mapping features to tex-
tual artefacts. In addition to CIDE, FeatureMapper ab-
stracts from the concrete syntax and supports model-
representations regardless whether those are textual or
graphical models. VML* [36] by Zschaler et al. is a family
of languages for variability management. In contrast to
FeatureMapper, they use an operational approach where
each feature is associated with a set of transformations
that are executed on the models of the SPL.

13 Picus

Picus14 [114] is a faceted browsing interface for arbitrary
models that allows for exploration of available models by
complex filtering.

13.1 Background

Finding a suitable reusable component is still a chal-
lenging aspect of software reuse, in particular, when the
components are models of various types that include ev-
erything from documents to source code. To address this
problem, Picus uses the concepts of faceted classification

and faceted browsing. Faceted classification is a flexible
alternative to fixed catalogues. Instead of classifying an

14 http://www.reuseware.org/picus/

http://www.reuseware.org/picus/
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Figure 21 The faceted browser of Picus.

item into one class in a hierarchy of predefined classes,
the item is classified according to multiple smaller tax-
onomies [115]. Faceted browsing [116] is a user interface
paradigm that builds on this classification principle. Its
main benefits are: (1) The user can search by restricting
(and relaxing) facets at any time and in arbitrary order.
This allows him to browse according to his or her own
navigation path. (2) The user will never get empty re-
sult sets as with normal filtering and searching. This is
impossible by construction of the filtering interface and
contributes to the users browsing experience. (3) The
user does not require knowledge in advance about the
things that he wants to browse, but can explore com-
pletely unknown datasets. In the last years the popu-
larity of faceted browsing was pushed by web applica-
tions (mostly e-commerce) [117] and generic web-based
browsers emerged (e.g., Flamenco [118] or Exhibit [119]).

Picus was developed with the intent to use it in com-
bination with Reuseware (cf. Sect. 10) to browse a repos-
itory for reusable model components. In the context of
the MODELPLEX project, it was used in this combina-
tion in a case study defined by Telefónica R&D where
faceted classification and browsing was recognised as a
useful approach. More information about Picus and the
case study can be found in [114].

Picus supports three tasks related to faceted classifi-
cation and browsing: The definition of facets, the classifi-
cation of components that can be done manually or rule-
based, and finally the actual browsing. The definition of
new facets is a task that relates to language implemen-
tation, since new domain-specific facets may be needed
for specific DSLs. Classification is done during language
application by classifying models using facet values. Al-
ternatively, one can add derivation rules (formulated in
OCL; cf. Sect. 7) to facets which perform a classification

1 if Widget.allInstances().size() < 10 then
2 ’Low’
3 else if Widget.allInstances().size() < 30 then
4 ’Medium’
5 else
6 ’High’
7 endif endif

Listing 6 OCL derivation rule for the facet Complexity.

automatically by inspecting the contents of the model to
classify. Once models are classified, one can browse for
existing models during the language application phase.

13.2 Applied on Example

We utilise Picus to browse for AppFlow models. In par-
ticular, we classify and search in a set of template screens,
as introduced in Sect. 10.2 (Reuseware example).

We started by defining a set of template screens and
classifying them. For that, we used the following general
facets that are applicable to any kind of model: Matu-
rity and License. Furthermore, we defined, two domain-
specific facets for AppFlow models: Category and Com-
plexity. For the facet Complexity, a derivation rule was
defined with OCL. Facet value derivation rules automati-
cally derive the classification for a model by inspecting it.
The rule for the facet Complexity is shown in Listing 6.
The rule counts the number of widgets in a screen tem-
plate and automatically classifies that screen template
with one of the facet values Low, Medium, or High.

Figure 21 shows the faceted browsing perspective of
Picus that is integrated into Eclipse. The browser’s fea-
tures range from special widgets for presenting facets,
over a free-text search to features such as grouping and
sorting. The important parts of the browser are marked
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in Fig. 21 and include the main functionality of a faceted
browser. These parts are the result view (A), a grouping
and sorting facility for the result view’s entries (B), as
well as widgets to present available facets and their val-
ues (C). As there might be more than six facets available,
a separate view lists other available facets (D). While the
user selects facets and values to perform zoom-in and
zoom-out steps with (C) and (D), the current search
query is shown in another view (E). Finally, a search
view gives the opportunity to perform a free-text search
over available facets and classifications (F). These fea-
tures can be used to search for arbitrary models.

In the example search of Fig. 21, the AppFlow model
Login (cf. Fig. 14) is part of the result set (A). The
domain-expert can now use this result and import the
such found model component in a new AppFlow model
as discussed in Sect. 10.2 (Reuseware example).

13.3 Role in DropsBox

Picus, as a browser for arbitrary models, can be used
in combination with all DropsBox tools to find models
that are to be processed by one of the other tools. As
such, it can be helpful during language application and
development, since it cannot only be used to search for
models, but also for Ecore metamodels, EMFText syntax
specifications (cf. Sect. 5), OCL expressions (cf. Sect. 7),
Reuseware component model or composition language
specifications (cf. Sect. 10), and others. Furthermore,
the rules for automated classification are defined in OCL
(cf. Sect. 7) and specific integration with Reuseware (cf.
Sect. 10), to support drag and drop of search results from
the result view into model compositions, is provided.

13.4 Related Tools

Although component libraries, such as CORBA [120]
and UDDI [121], as well as libraries for specific modelling
languages exist, we are not aware of any faceted compo-
nent browser in the context of DSM that is combinable
with arbitrary DSLs and o↵ers comparable filtering and
browsing capabilities. The support of the faceted brows-
ing paradigm is the main distinguishing criteria here.
MoDisco [37] o↵ers a generic model editor that allows the
user browsing a model defined in an arbitrary DSL and
defining custom queries comparable to facet derivation
rules. However, this editor is designed to browse a single
large model instead of libraries of models. For a compar-
ison of work concerning libraries with facet support in
other software engineering disciplines, refer to [114].

14 LanGems

LanGems15 [122] provides a metamodelling approach
supporting the definition of self-contained and reusable

15 http://www.langems.org/
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Figure 22 LanGems – a role-based language composition
system.

language components and their composition in easily
evolvable, adaptable and extensible language families.

14.1 Background

A language family denotes a set of related languages that
share some common syntactic and/or semantics concepts
but also di↵er in certain elements. The development of
language families is motivated by the potential for reuse
among family members and the need to adapt and ex-
tend languages to di↵erent application domains and con-
texts. We discussed and evaluated the potential of lan-
guage families and motivated modular development of
DSLs [123], ontology languages [124], OCL [122], and
metamodel-based tool integration [125].

Based on our experiences in invasive software compo-
sition (ISC) [126] we investigated a number of existing
language engineering approaches with respect to their
applicability in modular language development [123]. Al-
though various approaches can be found that support
modularity in language syntax and semantics, it turned
out that current inheritance-based composition mecha-
nisms restrain the independence and, thus, reusability
of individual language components [122]. Furthermore,
we identified a lack of systematic support for component
adaptation during language composition [122]. To ad-
dress these challenges we suggested to consider the lan-
guage’s abstract syntax—i.e., the language metamodel—
as the primary artefact in a dedicated language compo-
sition system.

A composition system can be defined in terms of a
component model, a composition language and a compo-
sition technique [126]. To provide these three elements
LanGems extends the EMF metamodelling infrastruc-
ture with a role-based [102,103] language composition
system. Role-based modelling evolved in the domain of
software design as a natural extension of class-based
modelling. It focuses on the collaboration of objects that
play context-dependent roles to implement specific sys-
tem concerns. Such collaborations form individual com-
ponents of reuse that are superimposed to derive a sys-
tem implementation [127]. This motivates the applica-
tion of role-based collaborations as the component model
of our language composition system and a role-based
composition language to describe the superimposition

http://www.langems.org/
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of several role components (cf. Fig. 22). As composition
technique we apply a generative role-implementation pat-
tern that transforms a role-based language specification
to an integrated language implementation.

Increased reuse of language components and an en-
hanced flexibility during their composition is expected
to enable a more e�cient realisation of languages. In
this section, we demonstrate the application of language
composition to AppFlow and discuss benefits with re-
spect to language evolution, adaptation, and extension.

14.2 Applied on Example

The packaged structure for the AppFlow metamodel pre-
sented in Fig. 2 already indicates a first motivation to
apply a compositional language engineering approach to
implement AppFlow as a language family. Subpackages
like statemodel or screenmodel introduce sublanguages
which would benefit from independent evolution, and
flexible adaptation and extension for di↵erent applica-
tion contexts. Consider, for instance, a logging proto-
col specification language that relies on the state-based
abstraction, but does not necessitate a specification of
user interface elements, or a user-interface designer that
applies user interface specifications independently of a
state-based application flow. However, such independent
evolution and reuse of components is currently hindered
by their tight and strong coupling. In the following we
will exemplify how the application of our language com-
position system helps to tackle these issues by design.
We discuss how AppFlow is modularised in role-based
language components and how role composition helps
component adaptation and reuse.

Figure 23 depicts role-based language components
derived from the AppFlow language. Each module cor-
responds to a package of the AppFlow language. Besides
natural classes, as found in the plain metamodel, special
role classes are represented by the rounded rectangles.
Such role classes specify the expected interface of a lan-
guage component, i.e., parts of the component that are
expected to be bound and specialised by classes found in
other language components. Furthermore, each role class
can define role features and operations (in the body of
the role class) that contribute to the role interface.

For example the role class Action introduces no role
features but the role operation execute(). This role
class prepares the statemodel for extension with concrete
actions that may be defined in another language compo-
nent. Other role classes are Widget preparing the widgets
used in the screenmodel for extension, or Effect allow-
ing other language components to refine the specification
of results for clicks on a Button.

In contrast to the packages in the AppFlow meta-
model there are no connections across language compo-
nents which makes them self-contained by design and
helps their independent evolution and reuse. Besides its
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Figure 23 Role-based language components for AppFlow.

metamodel, defined in terms of a role model, each lan-
guage component may contribute a concrete syntax and
semantics specification solely defined against the role
model. For a more detailed discussion of syntax and se-
mantics specification in LanGems we refer to [122].

Next, we want to derive an integrated language from
the role-based language components defined in the pre-
vious section. Therefore, we specify a language compo-
sition program using role bindings between the compo-
nents. Each role binding connects natural classes with
the role they play in another language component. Fig-
ure 24 depicts the role bindings necessary to connect the
introduced language components to the AppFlow lan-
guage.

Here, a Statemodel plays the role of a Behaviour-
Specification in the applicationmodel component,
the Action role in statemodel is played by Screens
from a screenmodel or MethodCalls from java, and
the Effect of a button click may be an Event in the
statemodel. In these role bindings it has to be spec-
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Figure 24 Composition program for AppFlow.

1 Screen plays UIElement {
2 identifier : name; // bind structure
3 initialise() : setupScreenComponents(); // bind semantics
4 }

Listing 7 Example of role operation binding.
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Figure 25 Logging component and composition of logging
protocol specification language.

ified how role players implement the role features and
operations of the role they are bound to.

The binding of Screen to UIElement is exemplified
in Listing 7 by mapping screen feature name to feature
identifier (line 2). Also, setupScreenComponents() is
mapped to the operation initialise() from UIElement.
Thus, role bindings do not only connect language com-
ponents but also provide flexible means to adapt and
integrate their structure and semantics.

The AppFlow language can be considered as a par-
ticular language variant that can be derived from the
language family formed by these components. Figure 25
introduced a language component to specify log mes-
sages and shows how to derive a language variant for
the statemodel-based specification of a logging protocol.

14.3 Role in DropsBox

The LanGems language composition system is tightly
integrated with the EMF. Consequently, it can be com-

bined with other DropsBox tools applied by tool devel-
opers during language engineering. For instance EMF-
Text was used in various applications to enable the com-
position of concrete syntax for language components.
Tools like Dresden OCL (cf. Sect. 7) or JastEMF (cf.
Sect. 6) can be combined with LanGems to modularly
define well-formedness rules or static semantics of lan-
guage components. A combination of the FeatureMap-
per and LanGems during language engineering eases the
specification and customisation of language families. Here
feature models could be used to specify supported lan-
guage variants and mapping them to the corresponding
fragments of a language composition program.

14.4 Related Tools

LanGems aims at contributing to modularity in language
metamodelling. It, therefore, is related to Eclipse-based
metamodelling tools like EMF [5], KM3 [38] or Ker-
meta [39]. In addition, there are further implementa-
tions of MOF-based metamodelling tools like Netbeans-
MDR [40] or MOFLON [41] and proprietary tools with
metamodelling capabilities like Jetbrains MPS [42], Meta-
Edit+ [43] or Microsoft OSLO [44]. All these approaches
use packages for modularisation and package import as
means for connecting language modules. As discussed
in detail in [122,123] this induced issues with informa-
tion hiding and module reusability. The tool HIVE in-
troduced in [45] proposes an alternative modularisation
of languages using slices and roles. For a comparison to
LanGems we also refer to [122].

15 JaMoPP

JaMoPP (Java Model Parser and Printer)16 [128] is an
EMF-based implementation of the syntax and the static
semantics of the Java programming language. It fosters
the reuse of the Java language when designing new DSLs.
Also, JaMoPP targets language evolution when exist-
ing Java programs are analysed and DSL models are
extracted.

15.1 Background

Java is an object-oriented programming language that
is widely used both in academia and industry. To em-
ploy Java in the context of MDSD, one must bridge the
gap between modelling and programming. Typically, this
is performed by generating code from models to obtain
an executable specification of the system at hand. The
fact that models were introduced to provide higher ab-
stractions than what is usually found in general-purpose
languages (GPLs) often caused the perception that an

16 http://www.jamopp.org/
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explicit distinction between the two types of languages
is required. We think this perception is not only wrong,
but leads to several problems. First, modelling tools can-
not be applied to programs. Second, well-known research
results in the area of programming languages are rein-
vented by the modelling community. Overcoming these
drawbacks and making Java a first-class citizen in the
modelling world motivated the idea of building JaMoPP.

The main motivation to build JaMoPP was to allow
for the application of EMF-based tools to Java programs.
In particular, we were interested in composing programs
with Reuseware (cf. Sect. 10), mapping features of soft-
ware product lines to code fragments (cf. Sect. 12),
and to investigate the synchronisation between gener-
ated code and models. But, JaMoPP was not only built
with these three application areas in mind. It was clear,
that applying EMF-based tools to Java programs would
yield much higher potential. To name a few potential
applications, syntactically safe code generation was en-
abled by JaMoPP [129], language extensions could be
built, and model transformations could be applied.

Also, besides the direct applications that were en-
abled by JaMoPP, the project turned out to be a cru-
cial test for EMFText. The complexity of the Java lan-
guage both from a syntactical and from a semantical
point of view made many shortcomings of EMFText ob-
vious. Thus, EMFText did benefit to a large extent from
the development of JaMoPP, in particular with respect
to stability, performance and scalability.

The main building blocks of JaMoPP are its Java
metamodel, the concrete syntax specification based on
EMFText (cf. Sect. 5), a model extractor for .class
files and additional tooling to integrate JaMoPP with
the Eclipse JDT. The metamodel consists of roughly 230
metaclasses in 18 packages. The syntax specification con-
tains about 150 syntax rules—one for each concrete meta-
class. Based on the tooling generated from this syntax
specification by EMFText, JaMoPP can convert Java
source code to models and also print source code from
models. The model extractor for .class files is needed
to resolve references to libraries where source code is not
available. Finally, the JDT integration connects JaMoPP
smoothly with Eclipse without worrying about how to
configure the classpath. In summary, JaMoPP lifts Java
to the level of modelling languages and enables tool de-
velopers to treat Java just like any other modelling lan-
guage that is based on EMF.

15.2 Applied on Example

Within AppFlow, we used JaMoPP to connect applica-
tion models specified with AppFlow with custom Java
code. In particular, a specific action (JavaAction) was
introduced that can reference Java methods. When the
application model schedules a JavaAction, the refer-
enced method is executed. By introducing such an es-
cape mechanism, parts of applications that cannot be

Figure 26 Metamodel for JavaActions.

1 statemodel {
2 // ...
3 state checklogin call <org.example.LoginService.checkLogin>;
4 // ...
5 }

Listing 8 Example instance of JavaAction.

modelled, or that are easier to program in Java, can be
safely embedded in the descriptive application model.

To realise JavaActions, the metamodel of AppFlow
contains a class that extends the abstract superclass for
all actions—Action—and that holds a reference to the
type Method from the JaMoPP metamodel. The defini-
tion for this class is shown in Fig. 26.

The metamodel of the Java language that is pro-
vided by JaMoPP enables one to establish references
from modelling languages to Java programs. Arbitrary
parts of Java programs can be referenced and thereby
integrated into models in a type-safe way.

To resolve the reference method (i.e., to look up the
actual Java method in the source code), a custom re-
solver class is needed. This class uses the JaMoPP in-
frastructure to find the referenced class by its fully qual-
ified name and to check whether the class contains a
method with the correct name. The resolver class needs
to be coded manually, because neither the metamodel
nor the concrete syntax definition of AppFlow provide
information on how to find methods. Basically, the re-
solver class extracts the fully qualified class name and
the name of the requested method from the dot nota-
tion, uses JaMoPP to look up the respective class and
iterates over the members of the class to find a matching
method.

An example instance of an action that refers to a
Java method is shown in Listing 8. Here, the checkLogin
method in class LoginService will be called whenever
the application reaches the checklogin state.

Since JaMoPP can access Java code as any other
model, we can ensure at development time that the ref-
erenced method does not only have the correct name,
but also the correct signature (i.e., parameter types and
return type). This way, type errors can be detected early
(i.e., before code generation or interpretation).

In the context of AppFlow, JaMoPP can only be
used to a limited extent. In general, JaMoPP provides
more opportunities for application in MDSD and DSM.
First, AppFlow uses an interpreter to run modelled ap-
plications. If we would employ code generation to de-
rive applications from application models, we could use
JaMoPP to ensure the syntactical correctness of gener-
ated applications [129]. This way more guarantees about
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the result of code generation can be given, which is not
possible with model to text transformation engines, but
essential if code templates are used by third parties.

Second, JaMoPP enabled the embedding of AppFlow
models directly in Java programs. To perform such an
extension of the Java language, one can simply import
the concrete syntax definition of Java and augment it
with additional rules (e.g., rules of the AppFlow lan-
guage). Then, AppFlow models can be directly embed-
ded in Java classes. Examples for such extensions can
be found in the EMFText Syntax Zoo [56]. To compile
extended programs with ordinary Java compilers, the ad-
ditional concepts must be translated to plain Java (e.g.,
using a model transformation). The examples in the Syn-
tax Zoo are accompanied by such transformations.

Of course, language integration can also be realised
in the opposite direction, that is to reuse Java concepts
and syntax in AppFlow models. A good candidate for
such an integration is to reuse Java expressions to model
guards for transitions in AppFlow state models.

Third, JaMoPP can be used to reverse engineer exist-
ing applications [130] in order to derive AppFlow models.
One can obtain a model-based representation of the ex-
isting Java code and search for code fragments that can
be replaced by AppFlow models.

15.3 Role in DropsBox

JaMoPP’s role in the DropsBox toolbox is to connect
modelling tools to the Java language. JaMoPP bridges
modelling and programming in the sense that it can treat
Java programs as models. Thus, modelling languages can
refer to Java programs in a type safe manner, modelling
languages can reuse Java concepts by importing the Java
metamodel, Java’s concrete syntax can be embedded in
other languages and other DSLs can be directly embed-
ded in Java.

Besides the direct opportunities that are enabled by
representing Java programs as EMF models, we are con-
vinced that JaMoPP has great potential as a platform
for a variety of empirical experiments. Given the huge
amount of Java source code that is freely available on
the web, the number of Java models that can be obtained
with JaMoPP probably outnumbers the instances of any
other language built on top of EMF. Having a formal
representation of all this code, is the basis to perform
comprehensive analysis with respect to the usage of the
Java language. For example, we published results about
the frequency in which proposed extensions to the Java
language (e.g., Closures) are actually used in Java pro-
grams [131]. The amount and the size of available Java
models can also be a significant test setting for modelling
tools. Other tools can benefit from such stress tests sim-
ilar to the process EMFText went through during the
development of JaMoPP.

In addition, eJava17—a language that is built on top
of JaMoPP—allows the augmentation of EMF meta-
models with operation bodies. This way, hand-written
code can be cleanly separated from generated parts. We
used eJava to implement other DropsBox tools (e.g.,
EMFText and Refactory).

15.4 Related Tools

Extracting models from Java programs is also targeted
by other approaches. MoDisco [37] and Spoon [46] use
the Eclipse JDT tooling to retrieve syntax trees from
Java programs and do also provide metamodels for Java.
However, both approaches lack extensibility and reuse
functionality that is enabled by the syntax specification
that is available from JaMoPP. For further information
about JaMoPP please refer to [128] and [132].

16 Lessons Learned

In the previous sections we illustrated our perspective
on current and future DSL development with DropsBox.
The development of DropsBox was driven by our re-
search and is thus deeply integrated with other research
activities. Our experience in such tool building in the
academic context is discussed in this section.

Many researchers in the software engineering com-
munity build tools. However, one can pursue the devel-
opment of such a tool to di↵erent degrees of maturity.
First, one can built very limited prototypes that show
the feasibility of some idea or algorithm. The e↵ort as-
sociated with building a prototype is relatively low. It
can be achieved by one or few developers in a rather
short time and typically in the context of a single re-
search project. Usually the user audience of such proto-
types is limited to the tool developers themselves. This
is perfectly fine, since the objective of the prototype is to
test whether some idea can be implemented and whether
some theoretical result can be confirmed. Most of the
DropsBox tools discussed earlier (e.g., DEFT, LanGems,
Picus, Refactory) represent or evolved from such proto-
types. For these examples, demonstrating the research
idea with an prototypical tool helped in gaining interest
and convincing colleagues, students and reviewers.

Second, one can build demonstrators which have a
slightly broader audience in the sense that they are de-
signed to be presented to a second party (e.g., other re-
searchers). This kind of tool requires more e↵ort, as one
must implement means to present the aim of the tools
in a comprehensible manner. Usually this involves build-
ing a user interface and providing some example that is
processed by the tool. Thus, the development of demon-
strators requires more resources and time. The set of

17 http://www.emftext.org/language/ejava/
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users may not only be restricted to the developers them-
selves or a single project, which introduces some addi-
tional e↵ort for documentation and training. With tools
like FeatureMapper, JaMoPP, JastEMF, Reuseware, or
MDPE we learned that producing such documentation
and training material is often worth the e↵ort. It sup-
ports the demonstration of our approaches in tutorials
and workshops. In return, the newly gained users and
contributors foster the evolution and improvement of the
approaches implemented on our tools.

Third, one can build initial products. Such tools ex-
plicitly target other stakeholders as users. These can be
students, fellow researchers, industrial project partners,
or any other party who is interested in using the tools. In
contrast to the previous category, products require even
more e↵ort, since one must provide a degree of maturity
that allows new users getting familiar with the tool and
using it on their own, given a small amount of help. Typi-
cally, products at such an initial or repeatable level [133]
are extensively documented and quality-assured by test-
ing with satisfactory results. As a consequence, there
is a lot of development e↵ort associated not only with
the realisation of the initial idea, but also with adja-
cent tooling, maintenance, bug fixings and community
building. This typically involves multiple developers, ex-
ternal partners, and scheduling of resources from mul-
tiple projects over longer periods of time. Such invest-
ments need a strong motivation, but on the other hand
can lead to good impact in both industry and academia.
The laborious development of EMFText paid o↵ by mo-
tivating, helping, and enabling the development of other
DropsBox tools and also attained interest from exter-
nal users in academia and industry. During the long de-
velopment of the Dresden OCL we experienced growing
interest from academia and practise, too. We were influ-
enced by several versions of the OMG OCL standard and
also contributed to the standard. We can report success
stories on di↵erent practical and academic applications.

We think that each of the three categories has its own
right to live, but we are also convinced, that researchers
can sometimes benefit from going the extra mile to push
some idea to an initial product, rather than remaining
with a prototype or demonstrator. Over the last years,
we have made very positive experiences, in particular
with the DropsBox tools that are most mature.

We are very well aware that countless hours have
been spent on development, fixing bugs and writing doc-
umentation. Still, when looking at the positive implica-
tions of all this e↵ort, we felt that these hours were well
spent. However, this is of course a very subjective im-
pression, which can hardly be proven. In the following,
we discuss di↵erent aspects that contribute to our im-
pression. To obtain an overview of these aspects, con-
sider Fig. 27.

We are convinced that di↵erent aspects of research,
illustrated as circles in Fig. 27, always play together
for successful and sustainable software engineering re-
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Figure 27 Aspects of tool building.

search. Therefore, we believe it to be dangerous ignor-
ing any of these aspects, and tool building in particular.
Through the influences between the aspects (arrows in
Fig. 27) they support and foster each other. From our
observation, tool building can exploit these influences to
have substantial impact on the other research aspects
and therewith multiply their results both in quality and
quantity. In the following, we summarise our experiences
of the influence tool building has on the other aspects.

Scientific publications and career A researcher is often
judged by the quality and number of his or her publi-
cations. Although tools can be as visible as publications
and the size of a user community is a good indicator for
quality and impact of a tool, this does not necessarily
help a software engineering researcher’s career directly.
In many cases, this leads to the assumption that building
tools beyond the prototype level is not worth the e↵ort
when pursuing an academic career and that the time is
better spent writing publications.

In our experience, this is often too shortsighted. We
rather experienced that the additional time spent on
driving prototypes towards products is time that is re-
paid by allowing us writing better quality and more cited
publications, as well as writing those in a shorter amount
of time. In the long run, we were thus able to produce
both initial products and high quality publications. Fur-
thermore, tools like Dresden OCL and EMFText, which
are in initial product state, are now used by other re-
search groups. This leads to an increased visibility in
the community. The tools act as evidence that high qual-
ity work is performed in our group. This all integrates us
more into the corresponding research communities which
also has positive feedback on publishing on the long run.

Concretely, we experienced three major factors where
tool building improved publishing in our group. First, as
we will further discuss below, tool building led to better
cooperation between researchers in our group, because
good working tools convinced researchers in our group
that they benefit from each others’ work. This enables
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joint e↵ort which eventually leads to the writing of pub-
lications with a group of people that already works well
together as a team. Second, writing a publication that is
directly based on a mature tool, is much more straight-
forward, because one does exactly know what works and
what does not. In prototypes, often certain functionality
that is not directly in the core of one’s research are not
implemented completely. Upon writing, one sometimes
has to navigate around these issues, unable to precisely
describe them, which is time consuming. Third, having
tools working well, allowed us doing evaluations (cf. em-
pirical validation below) quickly, which could then be
included in the publications to raise their quality.

Although having built a tool of product quality might
not be of much help when applying for a position in
academia, one should not forget that software engineer-
ing is a practical discipline. Thus, one should always
question the practical applicability of one’s research re-
sults. Doing that by building software is a very good
opportunity. Thus, from our experience, it does not hurt
PhD students to do concrete engineering of software to
nurse and improve their own engineering skills.

Research community and teaching Our group has long-
term experiences in building tools in an academic en-
vironment and in using them in research as well as in
teaching. Often bachelor and master students design and
implement tools in their theses, and by this means con-
tribute to the validation of research results of PhD stu-
dents. Not surprisingly, we learned that a strong motiva-
tion of students is a big success factor in building tools
with high software quality. Motivation can be developed
in particular by requests and feedback from external aca-
demic or industrial partners/customers and by creation
of a productive team atmosphere. A good reputation in
the research community improves this e↵ect.

Furthermore, students and researchers are typically
the first users of the developed tools. Consequently, we
use our own tools both in research and teaching to get
valuable feedback for further development activities. By
doing so, external partners accept the high qualification
of our alumni. This regards not only the advanced knowl-
edge in MDSD and DSM but also the skills in profes-
sional software development in general.

Empirical validation In recent years, empirical studies
gained more and more importance for both the scientific
and practical evaluation of methods and approaches in
software engineering [134]. The results of empirical vali-
dations are interesting for several reasons. They provide
valuable feedback for the evolution of tools and engineer-
ing approaches. They provide evidence for the evaluation
of research results in scientific publications. Finally, em-
pirical validations are an important foundation for re-
search targeting transfer of research results to practise.

The maturity of a tool implementing or supporting
a given engineering approach is a key factor for such

empirical studies. First, it influences the quality of the
evaluation results. An insu�cient tool implementation
may mask the approaches’ benefits or obfuscate its weak-
nesses. Second, a higher number of external users eases
the acquisition of empirical data. We experienced that
di↵erent maturity levels enable di↵erent models of em-
pirical validation [135]. While prototypes are typically
used to assert the feasibility of a new technology, more
advanced validations like replicated experiments, case
studies, or field studies require higher maturity levels.
This need for reliable validation results in publications,
for tool evolution and in technology transfer, contributes
to our motivation of building mature tools.

Technology transfer and industrial partners One im-
portant goal of applied research is to transfer new ideas
and methods to the industry. Such transfer can be re-
alised in di↵erent ways. First, students carry their knowl-
edge to companies when they finish their studies. Sec-
ond, industrial partners take part in research projects,
which is also an opportunity to sell new research results
to an industrial audience. Third, new enterprises can be
created to enable the commercial exploitation of new
methods. Fourth, providing tools implementing novel en-
gineering approaches freely or open source allows such
transfer of technology.

We think that all four categories of technology trans-
fer do rely to some extent on the maturity of tools built
by researchers. In teaching, we can hardly convince stu-
dents of some new technology if they cannot experiment
with the respective tools. In the best case, they will go
o↵ to their employers and tell them about this nice idea
which is far from being useful in practise. The same can
be observed when trying to convince industrial partners
directly. If one cannot solve the problems of the part-
ner for reasons of tool immaturity, it is usually hard to
convince them of the idea behind the tool.

Founding a new enterprise based on a tool, which is
too far away from deserving the label product, will also
eventually fail. If one cannot create something that can
be sold within a reasonable time span, the new enterprise
will run out of money and vanish. Finally, providing tools
free of charge or open source does not make any sense,
until a certain level of maturity is reached. A user com-
munity will only establish if the provided tool is actually
usable. Once this stage is reached, there is a good chance
that other people will get involved, but from our experi-
ence this does not happen before at least the state of an
initial product is reached.

Building multiple related tools Developing various re-
lated tools di↵ers from building an individual tool in
many ways. First, existing tools can be used for build-
ing other tools. This has the benefit of detecting bugs
and design issues in existing tools at an early stage and
getting feedback and enhancement requests from within
the group. It is the eating your own dog food principle,
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which fosters usability and maturity of new tools. Sec-
ond, if multiple related tools are built, it does not hurt
too much if the development of one tool is considered
to be not worthwhile to be continued. It has the evolu-
tionary aspect of investing more resources in promising
ideas and tools and letting the others vanish. Third, we
observed that building related tools provokes interest-
ing dynamics within the development groups, both with
regard to mutual motivation and increased interaction.
The latter is an important factor and we observed that
building those di↵erent tools led to e↵ects, where peo-
ple started working together regardless of their research
project a�liation or their individual research interests.

17 Conclusion

In this paper we presented the Dresden Open Software
Toolbox (DropsBox), a platform consisting of eleven tools
for DSL development and application. The DropsBox
tools support various activities in the life cycle of a DSL.
All DropsBox tools are based on EMF which is used as
modelling tool during the analysis and design of a DSL.
Furthermore, EMF is the integration platform between
the DropsBox tools and allows for seamless interoper-
ability between and integration of the di↵erent life-cycle
phases of a DSL.

The DropsBox provides an integrated tool set for lan-
guage development supporting language design, imple-
mentation, deployment and evolution. In language ap-
plication DropsBox tools contribute features that were
previously only available for general-purpose modelling
or programming languages. Although some tools can be
exchanged by related tools, their tight integration in a
toolbox o↵ers a unique environment and comprehensible
approach for the DSL life cycle. We demonstrated these
features and their benefits using a running and tested
example.

Summarising our DropsBox research, we discussed
the lessons learned in building and integrating language
engineering tools. Our experiences are that building ma-
ture tools in the context of research needs careful man-
agement of resources, but fosters other research activi-
ties. In particular, we explained, how tool building serves
the collaborations of researchers within our group and
the collaboration of our group with others from the DSL
engineering and MDSD research communities as well as
industry.

The DropsBox provides a unique set of capabilities
among the modelling and metamodelling toolboxes (also
called language workbenches) we are aware of. We rough-
ly distinguish them into EMF-related toolboxes and tool-
boxes that use another integration platform. The best
known EMF-related toolboxes are the Eclipse Model De-
velopment Tools (MDT),18 Epsilon19 and the former

18 http://www.eclipse.org/modeling/mdt/
19 http://www.eclipse.org/gmt/epsilon/

openArchitectureWare (oAW) consisting of tools like X-
text, Xtend, and Xpand.20 Other toolboxes use propri-
etary integration platforms to bundle a number of tools
for DSL development to a toolbox. Without claim to
be complete we refer to other toolboxes such as Strat-
ego/SDF,21 MetaEdit+,22 and Meta Programming Sys-
tem (MPS).23 An essential di↵erence between all these
toolboxes and DropsBox is the coverage of a DSL’s life
cycle. The mentioned toolboxes primarily focus on fea-
tures for language implementation including concrete
syntax specification, generation of editors, model vali-
dation, model transformation, model interpretation, and
code generation. The DropsBox goes beyond these fea-
tures by transferring further formalisms from language
engineering and language application to modelling and
metamodelling and by investigating phases of the DSL
life cycle beyond design and implementation of language
syntax and semantics.
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