
Integrating OCL and
Textual Modelling Languages

Florian Heidenreich, Jendrik Johannes, Mirko Seifert,
Michael Thiele, Christian Wende, and Claas Wilke

Institut für Software- und Multimediatechnik
Technische Universität Dresden

D-01062, Dresden, Germany
{florian.heidenreich,jendrik.johannes,mirko.seifert,

michael.thiele,c.wende,class.wilke}@tu-dresden.de

Abstract. In the past years, many OCL tools achieved a transition
of OCL from a language meant to constrain UML models to a univer-
sal constraint language applied to various modelling and metamodelling
languages. However, OCL users still experience a discrepancy between
the now highly extensible parsing and evaluation backend of OCL tools
and the lack of appropriate frontend tooling like advanced OCL editors
that adapt to the different application scenarios.
We argue that this has to be addressed both at a technical and method-
ological level. Therefore, this paper provides an overview of the technical
foundations to provide an integrated OCL tooling frontend and back-
end for arbitrary textual modelling languages and contributes a stepwise
process for such an integration. We distinguish two kinds of integration:
external definition of OCL constraints and embedded definition of OCL
constraints. Due to the textual notation of OCL the second kind provides
particularly deep integration with textual modelling languages. We apply
our approach in two case studies and discuss the benefits and limitations
of the approach in general and both integration kinds in particular.

1 Introduction and Motivation

The Object Constraint Language (OCL) [1] has originally been developed to
constrain models defined with the Unified Modeling Language (UML) [2]. Its
standardised textual syntax and formal semantics promoted the implementation
and adoption of OCL by different tool vendors which in turn supported practical
adoption of OCL in combination with UML. Beyond its application to UML,
OCL advanced to a constraint language applicable for various modelling lan-
guages. This includes support for modelling [3–8] and metamodelling languages
[9, 10] like the Meta-Object Facility (MOF) [11] or Ecore [12]. The request for
language-independent reuse of OCL led to extensible and adaptive approaches
for OCL parsing and evaluation [7, 10, 13, 14].

Today, we experience a discrepancy between the technical facilities and their
application in practice. While the Eclipse Modeling Framework (EMF) [12] is

2 Heidenreich et al.

equipped with an extensible OCL parser and evaluator [10], EMF (meta)models
that use OCL constraints for well-formedness rules or integrate it as a constraint
language are hard to find. We argue that one reason for this observation is a
lack of adequate end-user tooling. While parsers and evaluation engines [10, 13]
already provide means to apply OCL on various languages, OCL users still ex-
perience a lack of adequate tooling to write constraints in the first place [15].
Advanced OCL editors that provide name resolution, code navigation, auto in-
dentation, code macros, code completion, or debugging are highly required. How-
ever, their implementation faces a special challenge, which results from the man-
ifold applications of OCL. All the above mentioned editor functions are based
on a structural and semantic evaluation of OCL expressions that are strongly
influenced by the language OCL is combined with or applied to.

Our goal is to provide such advanced editing functionality for OCL in com-
bination with arbitrary textual (meta)modelling languages. Achieving this goal
does not just require an appropriate technical infrastructure, but in particular
a systematic process to apply such infrastructure to corporately customise the
OCL backend and frontend for different application scenarios. In this paper we
provide an overview of the technical foundations to integrate OCL with arbi-
trary textual modelling languages and contribute a stepwise process for such
integration. There, we distinguish two kinds of integration: external definition of
OCL constraints and embedded definition of OCL constraints. We evaluate the
benefits and limitations of both types of integration on exemplary case studies.

This paper is structured as follows: In Sect. 2 we motivate OCL integration
using a simple example language, which will later be used to explain the general
integration process in Sect. 3. Here, we systematically present the steps needed
to derive a customised tooling frontend and backend to efficiently apply OCL in
combination with arbitrary textual modelling languages. To show the genericity
of the approach, its application to Ecore is presented in Sect. 4. In Sect. 5, we
report on lessons learnt during application and elaborate current limitations of
our integration technique. Related work is investigated in Sect. 6 and Sect. 7
concludes our contributions.

2 Running Example—The Forms Language

To demonstrate the integration of OCL into a textual modelling language, we
integrate OCL with the Forms Language1—a language to model simple forms
in a textual manner. Such form models can be transformed into PDF or HTML
forms or interpreted by an Eclipse-based wizard providing the form’s fields. The
Forms language was designed using EMFText [16].

Figure 1 shows a pizza order form specified in the Forms language. The Form

consists of two Groups containing multiple Items to enter the order information.
As shown, Items can have different types like FreeText, Number or Choice.
Although the model is fully specified, no integrity checks can be performed.

1 http://www.emftext.org/language/forms/

Integrating OCL and Textual Modelling Languages 3

Fig. 1. Example Pizza Order Form Specification.

To overcome this limitation, we like to extend the Forms language with
support for specifying constraints on instances of form models (i.e., completed
forms). To formulate such constraints we want to use OCL. In principle using
OCL in this context can be achieved by embedding OCL directly into form
definitions or by employing external OCL constraints that refer to the form of
interest.

Before we actually start the discussion of the integration process, we first
want to sketch the desired result of this process. Figure 2 shows an excerpt of
an OCL file defining integrity constraints ensuring that undesired compositions
of pizza toppings are not allowed. Furthermore, the entered telephone number
of a pizza order form is checked for correctness. This is one possible style of
integration—the external use of OCL.

Figure 3 shows the same constraints embedded into the pizza order form. This
second integration example corresponds to the second style of integration—the
embedding of OCL. As can be seen, packages and contexts of OCL constraints
have not to be declared as they can be derived implicitly from the given spec-
ification. Besides the advantage of having shorter specifications, OCL is now

Fig. 2. Example Pizza Order with External Constraints.

4 Heidenreich et al.

Fig. 3. Example Pizza Order with Embedded Constraints.

specified in the same document as the constrained model. This improves the
readability and comprehensibility of constraints since the developer does not
need to switch between multiple views to understand constraints and their con-
texts. Furthermore, if model elements are modified, the constraints’ context is
modified implicitly and no invalid states of constraints referring to non-existing
model elements can occur.

3 Integrating OCL with Textual Modelling Languages

In the previous section we have shown that either the external or embedded
definition of OCL constraints can be used to enrich the Forms language. In the
following we present an integration process applicable for both approaches and
textual modelling languages in general.

3.1 OCL Integration Process

We have developed an integration process to use OCL with different modelling
languages. The process is built around small specifications out of which all nec-
essary artefacts are created. The process itself is tool independent and thus is
not bound to the tools used in our case studies. The presented process consists
of the five steps depicted in Fig. 4. We used Ecore for metamodel definition and
EMFText [16] for textual syntax specification. DresdenOCL [17] was used for
OCL parsing and evaluation. Although the use of other tools should be possible
we did not evaluate further tools. Static semantics integration was realised using
an attribute grammar based on the Scala [18] library Kiama [19].

During Metamodel Integration (1), the metamodels of OCL and the textual
modelling language are combined. The resulting metamodel (FormsOCL.ecore) is

Integrating OCL and Textual Modelling Languages 5

Integrated OCL tool
frontend and backend

Ocl.ecore

Forms.ecore

Metamodel
Integration

FormsOcl
.ecore

Ocl.cs
Concrete
Syntax

Integration
Forms.cs

FormsOcl
.cs

Ecore
Code

Generator

Metamodel
Impl.

EMFText

FormsOcl
Parser

FormsOcl
Editor

Metamodel
Adaptation

FormsOCL
Adapter Spec

Ocl
Attributes

Static
Semantics
Integration

Stat. Sem.
Evaluator

FormsOCL
Attributes

Dynamic
Semantics
Integration

Forms
Interpreter

Forms
Interpreter

Ocl
Interpreter

<<reuses>>

existing
artefact

manually created
artefact

generated
artefact

process step generator
tool

1

2

3

4

5

Scala
Compiler

Pivot.ecore

Forms.ecore

Adapter
Generator

Adapter
Skeleton

Adapter Impl

<<implements>>

Fig. 4. The Generative OCL Integration Process (on the example of Forms language).

used by the EMF code generator to generate a Java metamodel implementation.
Next, during Concrete Syntax Integration (2) the textual syntax of both lan-
guages is integrated and used for the generation of a textual parser/editor using
EMFText. Since only an embedded OCL integration requires a new parser/ed-
itor, these first two steps are only required for embedded OCL definitions. The
step Metamodel Adaptation (3) is required for both approaches. The creation of
a Pivot Model representation of the DSL’s model enables DresdenOCL to parse
OCL constraints that refer to DSL model elements. Static Semantics Integration
(4) results in a combined static semantic analysis for integrated languages of step
(2). The additional attributes are only necessary with the embedded approach as
the static semantic analysis has to be extended to refer to DSL model elements
in that case. For external OCL definitions the metamodel adaptation from step
(3) is sufficient to allow semantic analysis of constraints defined on DSL model
elements. The last step (5), the Dynamic Semantics Integration is necessary to
evaluate integrated OCL constraints. Since evaluation is required for all OCL
integrations, both approaches require this step.

3.2 Integration Steps

After presenting the integration process as a whole, we now dive into detailed de-
scriptions of the individual steps using the Forms language integration as exam-

6 Heidenreich et al.

ple for explanation where necessary. We will particularly highlight the problems
that are accompanied with each step and how we solved them.

(1) Metamodel Integration (for embedded integration only) We used Ecore meta-
models to describe the abstract syntax of languages. To create an integrated
language, one has to create a new Ecore metamodel that imports both the meta-
model of OCL and of the language to integrate with. As Ecore is an implemen-
tation of Essential MOF [11], which in turn promotes a plain object-oriented
metamodelling language, the options for metamodel integration are delegation
and inheritance. Thus, one can either subclass one or more metaclasses or add
references to metaclasses of the involved modelling languages. By creating sub-
classes the integrated metamodel will allow to reference new types (i.e., to store
new kinds of objects in existing references). This can be used to allow elements of
the OCL metamodel (e.g., invariants or expressions) in places where the embed-
ding language did not do so before. Alternatively, one can“frame”the embedding
language by introducing a new root metaclass that points to this language as
well as to OCL metaclasses.

To extend the Forms language, a new metaclass called GroupWithOcl that
extends Group and has a reference to multiple DefinitionOrInvariants is cre-
ated (cf. Fig. 5(a)). By subclassing Group, Forms can reference either Groups—as
before—or reference groups with OCL expressions.

Conceptually, metamodel extension by inheritance and delegation was suf-
ficient to embed OCL in the Forms language. This is due to the fact, that we
reused large portions of OCL (invariants and expressions) as a whole. In other
cases of language integration, dedicated metamodel extension facilities may be
more appropriate (cf. Sect. 5).

(2) Syntactic Integration (for embedded integration only) After the abstract
syntax integration, the textual syntax of the integrated language needs to be
specified. In EMFText, textual syntax is defined by specifying one EBNF-like
grammar rule for each metaclass (cf. [16] for details). The integrated syntax can
import the existing rule sets of the textual modelling language and OCL to reuse
them. For the new metclasses, new rules have to be specified. In the case of the
Forms language, a new rule for metaclass GroupWithOcl was required, which is
shown in Fig. 5(b). EMFText puts the existing and new rules into relation by
considering the inheritance and reference relations between the corresponding
metaclasses that were established in Step (1).

In general the integration of the textual OCL syntax and other textual mod-
elling languages is not as easy as observed for the Forms language. Context-free
grammars are not closed under composition, which is why adaptations of either
the embedding language or of OCL itself can be required. Such adaptations can
be performed by overriding imported syntax rules.

Moreover, even if the syntax definition of OCL and the embedding language
are theoretically compatible w.r.t. composition, we experienced problems with
EMFText and its underlying parser technology. Parsers generated by EMFText
use a scanner to split the input document into tokens, which then control the

Integrating OCL and Textual Modelling Languages 7

(a)

(b)

Fig. 5. (a) Metamodel and (b) Syntax Integration.

derivation of a syntax tree. If tokens of OCL conflict with tokens of the embed-
ding language, no parser can be generated. For the Forms language, prioritising
tokens was sufficient to resolve conflicts, but for more complex host languages,
the situation can be more difficult.

(3) Metamodel Adaptation (for both integration styles) OCL can not be parsed,
typed and evaluated in the context of a language without reasoning on the
elements of the language’s metamodel. As mentioned above, we use DresdenOCL
for parsing and evaluation. DresdenOCL was designed to be independent of a
concrete target metamodel. That is, it can be connected to arbitrary metamodels
as long as they contain concepts that can be mapped to the basic concepts of
object-oriented languages like types, namespaces, properties and (optionally)
operations. DresdenOCL works on standardised interfaces (a Pivot Model [8])
which define these concepts and all operations necessary for DresdenOCL to
reason on them (e.g., to get all operations defined on a type). For each modelling
language that shall be connected to DresdenOCL, an adapter has to be created
that maps the concepts of the language’s metamodel to the pivot model concepts.
To allow OCL evaluation on forms we provided a pivot model adapter for the
forms metamodel. It adapts Groups as Types since they contain typed Items that

8 Heidenreich et al.

can be adapted to Propertys of their Groups. This allows the definition of OCL
constraints on Groups using their Item’s values for integrity checks. The Types of
Items are adapted to Types as well. For instance, the FreeText type is adapted
to String, Choices are adapted to Enumerations. The enclosing Form is adapted
to a Namespace. Since a language’s adaptation to the pivot model contains parts
that are similar for all adapters, DresdenOCL provides an adapter generator
that allows adapter skeleton code generation for Ecore-based metamodels [20,
Chapter 8].

(4) Semantic Analysis Adaptation (for embedded integration only) The adapta-
tion of semantics analysis is required for the integration of OCL with modelling
languages both by the backend and frontend of an OCL tool. Features like name
resolution, type inference and checking enable advanced editor functions like code
completion and sophisticated error reporting and are also required for static and
dynamic OCL evaluation. In the current EMFText-based DresdenOCL parser,
an attribute grammar [21] is used to implement the static semantics of OCL. The
attribute grammar rules are specified with Scala using the library Kiama [19].

The semantic analysis is integrated in the tooling frontend by helper classes
generated from EMFText that call the attribute grammar. During reference re-
solving, references between OCL statements are resolved. E.g., the self variable
must be bound to the type of its context to allow code completion for property
and operation calls. Since OCL itself is not modified by the integration and type
bindings to the integrated language are realised by the pivot model, large parts
of the attribute grammar can be reused for every OCL integration. Neverthe-
less, many of the reused resolving operations require context information given
by the concrete language concepts OCL constraints are embedded in. Context
computation has to be modified for every embedded OCL integration. There-
fore, a new attribute grammar specifying the context computation is mixed into
the OCL attribute grammar exploiting the mixin composition capabilities of the
Scala language [18, Chapter 27].

(5) Dynamic Semantics Integration (for both integration styles) After integrating
OCL into a DSL it should be possible to evaluate OCL constraints on DSL-
based models. Thus, an OCL evaluation tool has to be integrated as the last
step of the process. In general, two different approaches exist to evaluate OCL
constraints: the interpretative and the generative approach [22]. The first one
interprets OCL constraints whereas the second one generates check code that has
to be integrated into the modelling language’s interpreter implementation (e.g., a
Java program). DresdenOCL allows both approaches. Using the template-based
OCL-to-Java code generator [23], an adaptation to the implementation language
can be achieved by modifying these templates. They describe a transformation
of OCL expressions into the implementation language and the instrumentation
of the constraint evaluation into the implementation code.

In addition, DresdenOCL provides an OCL interpreter [13], which can be used
with various runtime objects (e.g., Java objects, XML nodes or even SWT-based
widgets). In the case of the interpreter of the Forms language, runtime objects

Integrating OCL and Textual Modelling Languages 9

Fig. 6. Form Interpretation with Constraint Violation.

are SWT widgets, which are embedded into a wizard dialog. The evaluation
of OCL constraints is triggered when the user hits a next or a finish button.
Figure 6 shows a screenshot from a wizard page that belongs to the pizza order
example. As can be seen, the pizza topping constraint has been violated and,
thus, an error message is displayed.

4 eOCL - Integrating OCL into Textual Ecore

In addition to the integration of OCL into the Forms language, we implemented
an integration of OCL into a textual variant of the Ecore metamodelling language
that was developed with EMFText.2 The aim of this integration is to lower the
barrier of using OCL in metamodelling. Although OCL is well suited to define
constraints for metamodels [9, 10], there seems to be still little usage of OCL in
metamodelling in general. For instance, in the AtlanMod metamodel Zoo [24]—a
collection of around 300 metamodels—no OCL constraints are delivered with any
of the metamodels. We believe that this is to a high degree a tooling issue, since
many people that create metamodels are also familiar with OCL. We address
this issue with our integration of Ecore and OCL, named eOCL, that allows
to describe both a metamodel and OCL well-formedness rules defined on this
metamodel using an integrated textual syntax as shown in Fig. 8. The respective
metamodel integration is shown in Fig. 7 and similar to the extension performed
for the Forms language.

This complex case study showed that the above introduced integration steps
were sufficient for the integration of OCL into a more complex textual modelling
language than the Forms language. The major difference between the OCL in-
tegration into the Forms language and textual Ecore is related to dynamic se-

2 http://www.emftext.org/language/textecore/

10 Heidenreich et al.

Fig. 7. Metamodel Integration of Ecore and OCL.

Fig. 8. Forms Language Specification in eOCL.

mantics integration. For the Forms language, we integrated the DresdenOCL
interpreter to evaluate the OCL constraints. For Ecore, a generative integration
is more applicable since Ecore models are typically used for Java code generation.
The desired Ecore/OCL integration generates check code for all OCL constraints
and instruments the Java code generated from Ecore for runtime evaluation of
this check code.

Besides the variation of the OCL evaluation technique, the same integration
steps had to be performed for the Forms language and textual Ecore and similar
problems were experienced.

5 Discussion

In this section we conclude the limitations of the introduced process w.r.t. its
application to the different case studies, motivate potential solutions for future
work.

Metamodel Integration Our integration approach applied inheritance and dele-
gation for the composition of the languages to integrate. This approach was suf-
ficient for OCL integration as we reused the OCL (invariants and expressions)

Integrating OCL and Textual Modelling Languages 11

as a whole and worked with compatible metamodels. However, module com-
position with inheritance is discussed controversially for object orientation [25,
26] and language engineering [27]. It breaks the principle of information hiding
between modules, since inherited properties can be accessed and altered in ar-
bitrary ways. Furthermore, structural conflicts of combined metamodels (e.g.,
equally named attributes in classes to integrate) can not be handled appropri-
ately. In future work we therefore plan to combine our suggestions for modular
language engineering [27] with the approach presented in this paper.

Syntax Integration The problems experienced w.r.t. the syntactic integration of
OCL in both case studies are originated from the fact that context-free gram-
mars are not closed under composition. Syntactic ambiguities and token overlaps
occur for languages that use token definitions in their concrete syntax that are
used in OCL as well (e.g., numeric literals, string literals, or operators like +,
-, *). In our case studies manual adaptations of the integrated syntax w.r.t. to-
ken prioritisation and reuse were sufficient to handle such conflicts. However,
a more general solution for this problem could be the application of different
grammar formalisms that are less restricted w.r.t. syntactic overlaps (e.g., lexer
states [28], delegating compiler objects [29], scannerless parsers [30], context-
aware scanning [31], Parsing Expression Grammars (PEGs) [32, 33]).

Metamodel Adaptation The implementation of a pivot model adapter to integrate
arbitrary languages with OCL is the standard mechanism to couple the backend
of DresdenOCL to arbitrary languages. Equivalent mechanisms can be found for
other OCL tools [7, 10]. Future work has to investigate how we can extend the
presented approach to enable completely specification-driven adapter generation.
As pivot model adaptation can be considered a concrete technique for metamodel
integration we also plan to examine the applicability of our modular language
engineering approach [27] in this context.

Semantics Analysis In Sect. 3.2 we illustrated how the OCL attribute grammar
can be reused for multiple OCL integrations using mixin composition. Unfor-
tunately, the current design requires some boilerplate code that is required to
integrate the mixin configuration into the EMFText-generated parser. Actually,
five classes and two Eclipse extension points are necessary for each language in-
tegration. For the Forms/OCL integration these classes contain about 80 lines of
code. We plan to improve the language integration process by generating most
of this infrastructural code.

Dynamic Semantics Integration To reuse the same OCL interpreter for various
languages it is necessary to adapt model instance objects. In [13] we presented
an approach to address this issue. Furthermore, the invocation of OCL inter-
pretation has to be included manually into the tooling for the language OCL
is integrated with (e.g., the invocation of OCL interpretation when the finish
button in an SWT form is pressed). Currently, we do not see how the proposed
process could be improved in this regard.

12 Heidenreich et al.

Generative approaches for semantics integration share the same limitations.
The generation of OCL check code can be reused for different integrations if
their code generation relies on the same target language. However, code instru-
mentation or the adaptation of code generation to a new target language still
requires manual effort.

6 Related Work

Integrating OCL with different languages has been investigated in various sce-
narios before. For example, in [3] a report on the integration of OCL with Triple
Graph Grammars (TGGs) [34] can be found. The integration of OCL and the
RAISE Specification Language (RSL) has been investigated in [4]. OCL has
been integrated with Fujaba [5], business rules [6] and a profile for the railway
domain [35]. While [3] and [5] embed OCL in graphical languages, the host lan-
guage was textual in [4] and [35]. In [6] OCL was not embedded into another
language, but rather integration was performed by transforming OCL to SQL.
In addition, the integration of arbitrary textual languages into graphical lan-
guages has been presented in [36]. The diversity of the approaches to integrate
OCL with other languages shows the necessity for general guidelines on how to
achieve such integration.

As a first step to ease the application of OCL to arbitrary languages, the
adaptation of the query and navigation facilities of OCL has been evaluated
in [37]. This adaptation is part of the overall process to integrate OCL with
other languages as described in this paper. However, we restricted ourselves to
the integration of textual modelling languages and OCL. The semantical aspects
of this integration, which have been the main subject of the works mentioned
above can not be answered here as these highly depend on the host language.
Nonetheless, we tried to provide some best practises to achieve practical lan-
guage integration. For the integration of visual languages with OCL, one may
consult [38, 39], where a graphical variant of OCL—Visual OCL—is proposed.

Integrating OCL with Ecore, which served as a case study in this paper,
has recently been performed by the Eclipse MDT OCL project.3 Here, the
OCLinEcore Editor was released—a very similar approach to integrate OCL
and Ecore more tightly. However, while the result of this integration is close to
ours, no general procedure to accomplish such a coupling is available. In con-
trast, the goal of this paper is to outline the steps that are necessary to perform
such an integration for arbitrary textual languages.

Other constraint languages, besides OCL have also been subject to integra-
tion with modelling languages. For example, the Epsilon Validation Language
(EVL) [40], which is part of the Epsilon tool suite, is based on OCL and extends
the language with guarded constraints (i.e., constraints which are evaluated only
for certain model elements), constraint dependencies and constraint composition
(i.e., to compose complex constraints from sequences of simpler constraints).

3 http://www.eclipse.org/modeling/mdt/?project=ocl

Integrating OCL and Textual Modelling Languages 13

From the perspective of integration, EVL is loosely coupled with its target lan-
guages. While this enables to reuse constraints across multiple metamodels—
given these metamodels share concepts with equal names—it implies that no
static checks are applied to the constraints. For example, the binding of con-
straints to concrete metaclasses or features they navigate on is not achieved at
development time as we do in both integration styles.

7 Conclusion

In this paper we presented a tool-supported process to integrate OCL with arbi-
trary textual modelling languages. Our five step process supports two integration
kinds: external definition of OCL constraints that point into a textual model and
embedded definition of OCL constraints that are directly defined inside a textual
model. Only two of the five steps are required for the first integration kind, while
performing all steps yields support for both kinds. We showed the applicability of
the full process on two examples: an integration of OCL into a textual modelling
language for forms and an integration of OCL into a textual variant of Ecore.

The embedded integration is specific to textual modelling languages and takes
advantage of the fact that both the modelling language and OCL have a textual
notation. It provides integrated end-user tooling that is directly generated from
the specifications defined during the process using EMF, EMFText and Dres-
denOCL. Such a generative approach to develop integrated tooling is required
to increase the willingness of tool vendors to integrate OCL into new textual
modelling languages as well as the acceptance of OCL by end-users through the
deeper integration of OCL tooling. In the future we plan to extend the genera-
tive component of the tool support for our process—in particular by providing
adapter generators for the semantic analysis adaptation.

Acknowledgement

This research has been co-funded by the European Commission within the 6th Frame-
work Programme project Modelplex #034081, the 7th Framework Programme project
MOST #216691 and by the German Ministry of Education and Research within the
projects feasiPLe and CoolSoftware.

References

1. Object Management Group Object Constraint Language. Version 2.2 (February
2010)

2. Object Management Group Unified Modeling Language: Superstructure Version
2.2. Final Adopted Specification formal/2009-02-02 (February 2009)

3. Dang, D.H., Gogolla, M.: On Integrating OCL and Triple Graph Grammars. In
Chaudron, M.R.V., ed.: Models in Software Engineering, Workshops and Symposia
at MODELS 2008. Reports and Revised Selected Papers. Volume 5421 of Lecture
Notes in Computer Science., Springer (2008) 124–137

14 Heidenreich et al.

4. Debnath, N., Funes, A., Dasso, A., Montejano, G., Riesco, D., Uzal, R.: Integrating
OCL Expressions into RSL Specifications. In: IEEE Int’l Conf. on Electro/Infor-
mation Technology (EIT-2007), IEEE Catalog Number: 07EX1665. (May 2007)
182–186

5. Stölzel, M., Zschaler, S., Geiger, L.: Integrating OCL and Model Transformations
in Fujaba. ECEASST 5 (2006)

6. Demuth, B., Hußmann, H., Loecher, S.: OCL as a Specification Language for
Business Rules in Database Applications. In Gogolla, M., Kobryn, C., eds.: 4th
Int’l Conf. on Unified Modeling Language, Modeling Languages, Concepts, and
Tools (UML 2001). Volume 2185 of Lecture Notes in Computer Science., Springer
(2001) 104–117

7. Akehurst, D., Patrascoiu, O.: OCL 2.0 - Implementing the Standard for Multiple
Metamodels. Electron. Notes Theor. Comput. Sci. 102 (2004) 21–41

8. Bräuer, M., Demuth, B.: Model-Level Integration of the OCL Standard Library
Using a Pivot Model with Generics Support. In Akehurst, D.H., Gogolla, M.,
Zschaler, S., eds.: Ocl4All: Modelling Systems with OCL Workshop at MoDELS
2007, Berlin, Germany, Technische Universität Berlin (October 2007)

9. Loecher, S., Ocke, S.: A Metamodel-based OCL-compiler for UML and MOF.
Electron. Notes Theor. Comput. Sci. 102 (2004) 43–61

10. Eclipse Model Development Tools. http://www.eclipse.org/modeling/mdt/

11. Object Management Group Meta-Object Facility (MOF) Core Specification. Ver-
sion 2.0 (January 2006)

12. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Frame-
work, 2nd Edition. Pearson Education (2008)

13. Wilke, C., Thiele, M., Wende, C.: Extending Variability for OCL Interpretation. In:
13th Int’l Conf. on Model Driven Engineering Languages and Systems (MoDELS
2010). (October 2010) To be published in Springer LNCS series.

14. Kolovos, D., Paige, R., Polack, F.: Detecting and Repairing Inconsistencies across
Heterogeneous Models. In: 2008 Int’l Conf. on Software Testing, Verification, and
Validation, IEEE Computer Society (2008) 356–364

15. Chimiak-Opoka, J., Demuth, B., Silingas, D., Rouquette, N.: Requirements Anal-
ysis for an Integrated OCL Development Environment. OCL 2009 Workshop - The
Pragmatics Of OCL And Other Textual Specification Languages (2009)

16. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and
Refinement of Textual Syntax for Models. In Paige, R.F., Hartman, A., Rensink,
A., eds.: Model Driven Architecture - Foundations and Applications. Volume 5562
of Lecture Notes in Computer Science., Berlin/Heidelberg, Springer (Juni 2009)
114–129

17. TU Dresden: Software Technology Group DresdenOCL. http://dresden-
ocl.sourceforge.net/ (2010)

18. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. 1st edn. Artima
Press, Mountain View, CA, USA (2008)

19. Kiama - A Scala library for language processing. http://code.google.com/p/kiama/
(2010)

20. Wilke, C., Thiele, M.: DresdenOCL - Manual for Installation, Use and Devel-
opment. Technische Universität Dresden, Software Technology Group, Dresden,
Germany. (2010)

21. Knuth, D.: Semantics of context-free languages. Theory of Computing Systems
2(2) (1968) 127–145

Integrating OCL and Textual Modelling Languages 15

22. Demuth, B., Wilke, C.: Model and Object Verification by Using Dresden OCL.
In: Proceedings of the Russian-German Workshop Innovation Information Tech-
nologies: Theory and Practice, Ufa, Russia, July 25-31, 2009, Ufa, Bashkortostan,
Russia, Ufa State Aviation Technical University (July 2009)

23. Wilke, C.: Java Code Generation for Dresden OCL2 for Eclipse. Großer Beleg (mi-
nor thesis), Technische Universität Dresden, Dresden, Germany (February 2009)

24. AtlanMod Metamodel Zoo. http://www.emn.fr/z-info/atlanmod/index.php/Zoos
25. Bracha, G., Lindstrom, G.: Modularity Meets Inheritance. In: Int’l Conf. on

Computer Languages, IEEE Computer Society (1992) 282–290
26. Taivalsaari, A.: On the Notion of Inheritance. ACM Computing Surveys 28(3)

(1996) 438–479
27. Wende, C., Thieme, N., Zschaler, S.: A Role-based Approach Towards Modular

Language Engineering. In van den Brand, M., Gasevic, D., Gray, J., eds.: 2nd Int’l
Conf. on Software Language Engineering (SLE 2009), Revised Selected Papers.
Volume 5969 of LNCS., Springer (March 2010) 254–273

28. Clark, C.: Newlines and Lexer States. SIGPLAN Notices 35(4) (2000) 18–24
29. Bosch, J.: Delegating Compiler Objects: Modularity and Reusability in Language

Engineering. Nordic J. of Computing 4(1) (1997) 66–92
30. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The Syntax Definition Formal-

ism SDF – Reference Manual. SIGPLAN Notices 24(11) (1989) 43–75
31. Wyk, E.R.V., Schwerdfeger, A.C.: Context-Aware Scanning For Parsing Extensi-

ble Languages. In: 6th Int’l Conf. on Generative Programming and Component
Engineering (GPCE’07), ACM (2007) 63–72

32. Ford, B.: Parsing Expression Grammars: A Recognition-Based Syntactic Founda-
tion. In: 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’04), ACM (2004) 111–122

33. Grimm, R.: Better Extensibility through Modular Syntax. In: ACM SIGPLAN
2006 Conf. on Programming Language Design and Implementation (PLDI’06),
ACM (2006) 38–51

34. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In
Mayr, E.W., Schmidt, G., Tinhofer, G., eds.: Proceedings of 20th Int’l Workshop
on Graph-Theoretic Concepts in Computer Science, Herrsching, Germany. Volume
903 of Lecture Notes in Computer Science., Springer Verlag (1994)

35. Berkenkötter, K.: OCL-based Validation of a Railway Domain Profile. In Kühne,
T., ed.: Models in Software Engineering, Workshops and Symposia at MoDELS
2006. Reports and Revised Selected Papers. Volume 4364 of Lecture Notes in Com-
puter Science., Springer (2007) 159–168

36. Scheidgen, M.: Textual Modelling Embedded into Graphical Modelling. In Schiefer-
decker, I., Hartman, A., eds.: 4th European Conf. on Model Driven Architecture -
Foundations and Applications (ECMDA-FA 2008). Volume 5095 of Lecture Notes
in Computer Science., Springer (June 2008) 153–168

37. Kolovos, D.S., Paige, R.F., Polack, F.: Aligning OCL with Domain-Specific Lan-
guages to Support Instance-Level Model Queries. ECEASST 5 (2006)

38. Kent, S.: Constraint Diagrams: Visualizing Assertions in Object-Oriented Models.
In: OOPSLA. (1997) 327–341

39. Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: A Visualization of OCL
Using Collaborations. In Gogolla, M., Kobryn, C., eds.: 4th Int’l Conf. on Uni-
fied Modeling Language, Modeling Languages, Concepts, and Tools (UML 2001).
Volume 2185 of Lecture Notes in Computer Science., Springer (2001) 257–271

40. Kolovos, D.S., Rose, L., Page, R.F.: The Epsilon Book. Available online at
http://www.eclipse.org/gmt/epsilon/doc/book/

