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Abstract. Textual Syntax (TS) as a form of model representation has
made its way to the Model-Driven Software Development community and
is considered a viable alternative to graphical representations. To support
the design and implementation of text editing facilities many concrete
syntax and model mapping tools have emerged. Despite the maturity
of these tools, users still spend considerable effort to specify syntaxes
and generate editors even for simple metamodels. To reduce this effort,
we propose to refine a specification that is automatically derived from a
given metamodel. We argue that defaults in a customisable setting enable
developers to quickly realise text-based editors for models. In particular
in settings where metamodels evolve, such a procedure is beneficial. To
evaluate this idea we present EMFText [1], an EMF/Eclipse integrated
tool for agile TS development. We show how default syntax can easily
be tailored and refined to obtain a custom text editor for EMF models
and demonstrate our approach by two examples.

1 Introduction

Formal languages are the basis for most activities in computer science (e.g., to
describe data or to specify behaviour). They consist of a syntax and a semantics,
where the former describes the layout of valid sentences and the latter assigns
meaning. Well designed languages usually have a syntax that can be easily un-
derstood and that supports the languages’ semantics.

For a long time, syntaxes were textual, but during the last two decades graph-
ical representations have become very popular. In particular Model-Driven Soft-
ware Development has pushed the widespread use of graphical methods to rep-
resent (i.e., to model) software. Both types of syntaxes have their pros and cons.
Graphical syntaxes are strong in showing relationships, quantities and provide
the opportunity to zoom, which is useful to obtain an overview of the presented
sentence. In contrast, textual syntaxes have a predefined reading order, which is
valuable if sentences are interpreted in sequential order. Furthermore, in model
environments that lack a central version controlled model repository textual rep-
resentations can be easily compared and merged. Thus, graphical and textual



syntax must not be considered alternatives, but rather complements. While each
one can perfectly serve one purpose it might be inadequate for another one.

Textual syntax can be either generic or custom. Again, both have their pros
and cons. Generic syntaxes are defined on the level of metamodelling languages.
Thus, they are either instantly available or can be derived automatically for
concrete modelling languages. Custom syntaxes need manual specification ef-
fort. The former are also often more verbose and do not reflect the semantics of
a language nicely, in contrast to the latter, which are more compact and use sym-
bols that ease reading. To exemplify the difference, consider the two definitions
of a UML Transition shown in Listing 1.1.

1 Transition { source : State "StateA" target : State "StateB" } // generic syntax
2 StateA -> StateB // custom syntax

Listing 1.1. Two concrete syntaxes for a UML Transition

Clearly the customised syntax in Line 2 is easier to read, but also requires
additional specification effort. If users have metamodels for their languages and
want to use textual syntax for their models, the question is, how the benefits of
generic syntaxes (low effort) and those of customised syntaxes (easier readability,
reflection of semantics) can be combined. This paper presents an approach to
achieve this and therefore allows rapid and agile development of tooling for TS.
By deriving a default syntax, which can optionally be refined, our tool EMFText
aims to reduce the effort needed to develop tool support for TS. As we will
show in this paper, not only the initial specification of syntaxes, but also the
adaptation of syntaxes to evolving metamodels, can profit from the approach.
With this we follow a new direction in TS development, as opposed to previos
approaches which we discuss in Section 5, which decreases the effort of syntax
development in particular in the initial development phase.

The remainder of this paper is organised as follows: Section 2 describes how
models can be represented as text. In particular, we discuss the options that
exist both for deriving a default syntax as well as customising it later on. Sec-
tion 3 provides detailed information about EMFText—the tool that implements
our approach. Equipped with this, we present the concrete syntax definition for
two modelling languages in Section 4, revealing the strengths and drawbacks.
Section 5 compares the presented work with related approaches and Section 6
concludes this paper.

2 Approach

In this section, we first study how concepts used in metamodelling map to con-
cepts used in grammar engineering. Based on this knowledge, we explore how
default values for a concrete TS can be automatically derived for a concrete
modelling language (i.e., a concrete metamodel). Then we discuss how the de-
rived TS can be further refined and tailored if needed. As one example for the
derivation of default syntaxes, we will use the Human-Usable Textual Notation
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Fig. 1. Concepts of modelling languages (a) and text languages (b).

(HUTN) [2]—which is one but not the only possible way of deriving an initial
syntax1.

2.1 Mapping Modelling Concepts to Text Language Concepts

Before we can derive and refine a TS for a concrete modelling language, we must
recapitulate which concepts are available in textual syntaxes and how they re-
late to the concepts used in modelling languages. Typically, textual languages
are defined by context-free grammars and modelling languages are defined by
metamodels. Hence, a mapping between metamodelling and grammar engineer-
ing concepts must be established. We show these concepts side by side in Fig. 1.
In the following we first summarise the core concepts of metamodelling (based
on [3]) and of grammar engineering (based on [4, 5]). Afterwards (Sect. 2.2), we
discuss the mappings between the concepts. This discussion is based on [6].

Models defined in modelling languages are composed of elements that in
turn consist of attribute values and other contained elements. In addition, cross-
references between elements can exist. Which elements are allowed is defined
in a metamodel through classifiers (1a). By defining containment references be-
tween classifiers, the possible containment relations are defined (2a). Which at-
tribute values can be defined for an element is declared by attributes in the
metamodel (3a). Classifiers are also connected through superclass relationships,
which expresses exchangeability (4a). Possible cross-references are defined by
non-containment references (5a).

Sentences written in a textual languages consist of a sequence of elements,
where an element is either represented by a single symbol (i.e., a set of con-
nected characters) or another nested sequence, which again consists of symbols
and possibly other nested sequences. The allowed parts of textual languages are
defined in a grammar through productions (1b). By referencing other productions
through non-terminals in a sequence, the possible nesting of elements is defined
(2b). The symbols that may appear in a sequence are defined by terminals (3b).
Choices of different non-terminals can be defined to express exchangeability (4b).

1 see Line 1 in Listing 1.1 for an example of HUTN syntax



From these core concepts of both language engineering approaches, the fol-
lowing mapping can be derived. (1a–1b) Element types are defined through clas-
sifiers on the one side and by productions on the other. (2a–2b) The composition
of elements from others is expressed by containment references on the metamodel
side. Non-terminals that appear in a sequence express a similar relationship on
the grammar side. (3a–3b) Attribute values are also part of a model element
and can therefore be expressed by symbols. Consequently the attribute concept
is mapped to the terminal concept. (4a–4b) The superclass relationship can be
mapped to the alternative concept because both express exchangeability. (5a–
3b) For cross-references, there exists no direct correspondence in text. They can
however be mapped to symbols as well. In this case, the symbol would represent
an identifier that identifies the element to be referenced.

2.2 Derivation and Refinement

After discussing how modelling languages can be mapped to textual syntaxes in
general, the question is, what this mapping looks like for concrete modelling lan-
guages. Our design objective for such a mapping is to enable rapid and compact
text syntax definition. Keeping this in mind, we want to automatically derive a
default text syntax and then allow the developer to refine the generated syntax
in an intuitive and incremental manner.

Deriving a default text syntax can be performed using a) the language’s
metamodel and b) assumptions based on standards and best-practices. Hence,
these are the two parameters for this derivation process. We will shortly see
where one or the other is used to obtain parts of the default syntax. Following the
argumentation from Sect. 2.1 the derivation of syntaxes can be studied starting
from the elements of modelling languages. For example, each metaclass must
be mapped to a production. Thus, we will examine what such concrete default
mappings can look like. Once an initial mapping is obtained, it can be refined.
Since the options for the design of the default mapping and the customisation
are similar, we will discuss both together for each modelling concept.

Classifiers define the types of model elements that can be used in a model.
A representation of model elements as text, must disambiguate which class an
element belongs to. The most basic way to do so is to use a distinct terminal
symbol (keyword) for each classifier. HUTN realises this idea and uses the names
of the classifiers from the metamodel as keywords. In subsequent customisation
steps these default keywords can be changed. If classifiers can be disambiguated
based on other properties of their text syntax, the keywords can be removed
during the refinement process.

A Containment of model elements is expressed by nesting sequences. This is
achieved using non-terminals in sequences. These define the children (elements
in containment references) of the element defined by the parent sequence. Since
the containment relation between metaclasses is fully defined by the metamodel
the default nesting can therefore be directly derived. As the tree structures of
the metamodel and the grammar must match, the nesting is dictated by the
containment relation. However, the order in which contained elements are given



in TS can be refined. HUTN allows an arbitrary order, which can be restricted
by further customisation steps.

Attributes are typed properties of classifiers. Classifiers can have multiple
attributes. Consequently, the textual representation of an attribute must iden-
tify both the attribute itself (e.g., using its name) and its value, as well as, the
classifier instance the attribute belongs to. A default approach to have this three
things available is to a) define attributes in the context of their classifier (e.g.,
directly after the keyword), and b) state the name of the attribute in the text
together with its value. Thus, two terminals are sufficient to represent an at-
tribute and its value. HUTN adds a third one (a double colon) to ease reading
for humans. The default definition for the terminals used for attibute values can
be obtained using the type of the attribute. For primitive types this mapping is
straightforward. Numbers are mapped to text using their arabic representation,
boolean values are true and false, strings are enclosed in double quotes and
characters are surrounded by single quotes. Refining this mapping can be done in
different ways. The tokens for the attribute names can be omitted if an order is
defined upon the set of attributes or if all attributes have distinct types. Values
can be mapped differently (e.g., boolean values can be represented as yes and
no).

The Inheritance hierarchy of the metamodel defines that different types of el-
ements are allowed at certain positions. Consequently, Alternatives of sequences
are allowed at positions where different types of model elements (with a com-
mon supertype) may occur. The alternatives can be derived from the inheritance
hierarchy and can not be altered (without changing the metamodel).

Non-containment references connect model elements and establish a graph
structure. To represent such references in text, names (or identifiers) must be
used. To obtain unambiguous identifiers an attribute having some uniqueness
constraint (e.g., name or id) can be used. A default setting is thus to use the
values of such attributes to reference model elements. However, sometimes it is
not clear which attribute must be used or scoping rules apply. In this case the
handling of names must be refined. To do so, both the identification of elements
and the referencing rules (e.g., scoping) must be defined.

To summarise, a complete instance of a Classifier (i.e., a complete model
element with attributes and references) is represented by a Sequence of terminal
symbols (e.g., keywords and identifiers) and non-terminals. In the particular case
of HUTN, an initial sequence definition for a metaclass starts with a keyword
that equals the name of the metaclass name followed by terminal symbols and
names for the element’s attributes and references in an arbitrary order.

3 Overview of EMFText

To first derive and later refine a TS, developers require a tool that 1) performs
the derivation, 2) provides the facilities to refine the derived syntax, 3) supports
the evolution of the TS along with the metamodel it is based on and 4) generates
the tooling to create and manipulate models using the TS. Existing TS tools lack
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support for one or more of these requirements (see Sect. 5). Therefore, we imple-
mented EMFText that supports all the four functionalities in combination. With
EMFText we evaluate the theoretical analysis of Sect. 2 on different examples
in Sect. 4. This section therefore introduces EMFText, and how it supports the
four requirements (cf. Fig. 2).

To provide the refinement capabilities discussed in Sect. 2.2, EMFText pro-
vides a specification language called CS. An initial CS definition is therefore the
result of the derivation performed by EMFText (upper left of Fig. 2). Conse-
quently, an initial CS is obtained without any effort (as we will see in Sect. 4).
In CS specifications, the syntax for model elements is defined using concepts
from the Extended Backus Naur Form (EBNF). This is, because these concepts
from grammar engineering are well-known and are therefore a practical tool for
manual refinements. For refinements that go beyond grammar engineering as
the mapping of identifiers to cross-references (Sect. 2.1), EMFText generates a
Java API. Here a specification of how identifiers are resolved to the respective
elements can be implemented (lower left of Fig. 2). Again, to minimise specifica-
tion effort, a default implementation is provided by EMFText, where identifiers
are resolved to elements of the correct type having the correct name or id.

When metamodels evolve over time, the syntax might become incomplete
or invalid. In the first case, the textual syntax is incrementally derived for new
metamodel elements and syntax of removed metamodel elements is deleted. De-
velopers do not need to spend time to adapt their syntaxes to the changes made
to metamodels in these cases. However, changes in existing metaclasses with a
refined textual syntax cannot automatically be merged into an existing CS spec-
ification. In such situations EMFText informs the developer of necessary syntax
refinements by carefully analysing the CS specification. This analysis process,
which also ensures correctness during refinement, checks that the CS definition
matches the metamodel, by checking that 1) each production (rule) corresponds
to a concrete metaclass, 2) that there is a rule for each concrete metaclass and
3) all references defined in the metamodel are present in the syntax. Since CS is
itself defined with Ecore and EMFText, all these checks are performed on a CS
model (i.e., an instance of the CS metamodel).

Technically, EMFText is implemented as a set of plug-ins for the Eclipse plat-
form [7], tightly integrated with the Eclipse Modelling Framework (EMF) [3].
In addition to the mentioned resolvers, several artefacts are generated by EMF-



Text based on a CS to provide runtime tooling (right side of Fig. 2). First, a
parser is derived that can read text syntax conforming to the CS productions
and that creates a model. Second, the counterpart—a printer—that transforms
models to text is derived from the same specification. Third, an implementation
of the Resource interface of EMF is generated through which parser and printer
are plugged into EMF’s resource management (making them accessible to all
EMF-based modelling tools). For the parser generation, EMFText is generally
not bound to a specific technology (i.e., additional technologies can be plugged
in). However, currently we support only ANTLR [8]. We mention this, because
the concrete parsing approach used can influence the CS specification. There-
fore, the CS analysis mechanism described above can be enriched with checks
specific to the used parser technology. For instance, ANTLR cannot handle left
recursion. Thus, a mechanism for automatically resolving direct left recursive
rules was provided. Other left recursive rules are detected on the CS level and
users are encouraged to refactor their syntax definitions. If a different parser
generator is used, the detection of left recursive rules might become obsolete,
but other analysis might be needed to make sure the CS meets the criteria of
the respective parser generator.

4 Examples

The previous sections introduced the conceptual and technological foundations
for development of concrete syntax for modelling languages with EMFText.
Here, we exemplify development with EMFText by two well-established mod-
elling languages—feature models and UML state machines—and show how an
automatically derived TS can be tailored by several refinement steps. More ex-
amples can be found at [9].

4.1 Parsing and Printing of Concrete Syntax for Feature Models

Variability modelling is at the heart of product-line engineering [10]. One widely
used notation to express variability between different products in a product line
are feature models [11]. The feature metamodel depicted in Fig. 3 was taken
from the FeatureMapper [12], a tool for mapping features to models. A central
requirement for the development of the FeatureMapper was its compatibility
with different existing tools. Thus, it uses a simple and flexible abstraction as
feature metamodel which covers a broad range of existing feature model deriva-
tives.

Feature models describe hierarchical tree structures between features and
groups of features. These models are usually created using a diagrammatic nota-
tion, but as these models can grow for large product lines, an alternative textual
representation seems to be beneficial. Hence, providing adequate means for both
parsing and printing nested language elements are requirements for our concrete
syntax specification.
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Generating a Default Concrete Syntax The starting point in the develop-
ment of a TS for feature models is the concrete syntax specification language
CS of EMFText. As discussed in Section 3, CS specifications are tightly coupled
to one ore more EMF-based metamodels whose structure implicitly defines a
grammar skeleton. For every non-abstract metaclass a production rule can be
specified. Hence, a production’s left-hand side does not only correspond to a
non-terminal in a context-free grammar but also to a metamodel element with
the same name. Elements on the right-hand side of the production are mapped
to features (i.e., attributes or references) of the metaclass. To kick-start the de-
velopment of a new concrete syntax, EMFText generates a default syntax for
every non abstract metaclass based on the conventions introduced by the HUTN
standard. HUTN aims at providing a generic, human-readable textual syntax for
all kinds of MOF-based metamodels. For this purpose, it derives the syntactical
representations of model elements from the properties and relationships of the
corresponding metaclass.

An example using the specified syntax for the initialisation of a concrete
Feature with the name “SimpleFeature” is shown in Listing 1.2. Every Feature
declaration starts with the keyword “Feature”. Encapsulated in curly braces ini-
tialisations for all properties and references of the Feature in arbitrary order can
be given. Every single property initialisation is preluded by a keyword corre-
sponding to the name of the property and a colon.

1 Feature { name : "SimpleFeature" }

Listing 1.2. Feature declaration using the HUTN syntax

Concrete Syntax Tailoring We argue that HUTN is not acceptable for a
broad audience since it neither provides syntax tailored to a language’s ap-
plication domain nor reflects language-specific semantics. Thus, we propose an
optional but recommended tailoring of the generated grammar productions to
construct a more usable syntax. The code listing in Fig. 4 compares the initially
generated HUTN-based syntax specification with the adapted feature model syn-
tax after tailoring. Lines that have not changed during syntax tailoring span the
full width of the listing. Differing lines are shown side by side.

Line 1 assigns a name to the concrete syntax, which can later be used as the
file name extension for model instances (here featuremodel), refers to a Ecore
metamodel registered in the system under the given URI, and defines which



1
2

SYNTAXDEF featuremodel FOR <http://www.tudresden.de/feature> START FeatureModel
RULES {

3 FeatureModel ::= "FeatureModel"  

4
5
6

"{" ( "constraints"  ":" constraints | 
"root"  ":" root | 
"name"  ":" name['"','"'] )* "}" ;

name['"','"'] 
( "{" "constraints"  ( constraints ";")? "}“)? 
root;

7 Feature ::= "Feature"  

8
9

10
11

"{" ( "name"  ":" name['"','"'] | 
"minCardinality"  ":" minCardinality[INTEGER] | 
"maxCardinality"  ":" maxCardinality[INTEGER] | 
"groups"  ":" groups )* "}" ;

name['"','"'] 
("(" minCardinality[INTEGER] ".."     
maxCardinality[INTEGER] ")")?
( groups* )?  ;

12 Group ::= "Group"  

13
14
15

"{" ( "minCardinality"  ":" minCardinality[INTEGER] |
"maxCardinality"  ":" maxCardinality[INTEGER] | 
"childFeatures"  ":" childFeatures )* "}" ;

("(" minCardinality[INTEGER] ".." 
maxCardinality[INTEGER] ")" )?
("{" childFeatures* "}")?;

16 Constraint ::= "Constraint"  

17
18

"{" ( "language"  ":" language['"','"'] | 
"expression"  ":" expression['"','"']  )* "}" ;

language[] ":"  expression['"','"'];

19 }

HUTN-based Syntax Tailored Syntax

Fig. 4. CS specification for Feature Models

metaclass is used as the root element of a model and the start symbol for the
parser.

The rules section (Lines 2–19) contains one production rule for each concrete
metaclass. On the right-hand side of each rule we find 1. containment references
(e.g., childFeatures in Line 15) that define the positions of nestings, 2. at-
tributes (e.g., name in Line 6) that define the position of attribute values, and
3. keywords (e.g., ”FeatureModel” in Line 3) that are pure concrete syntax and
have no counterpart in the metaclass.

For attributes, which in contrast to references are followed by square brackets,
the allowed symbols as well as the mapping from such a symbol to a value in
the model can be customised. The first can be performed by using predefined
(e.g., INTEGER for minCardinality in Line 9) or custom defined token types
(can be defined with regular expressions in an extra section). A standard type
that allows a sequence of all letters and numbers is used by default if nothing
is specified (e.g., name in Line 6). The mapping can be adjusted by specifying
a prefix and a suffix instead of a token type (e.g., ” and ” for name in Line 4).
This causes EMFText to remove the prefix and suffix during parsing and to add
them during printing such that they never occur in the model.

The comparison of the generated and the tailored syntax shows that many
parts of the generated specification were reused or only slightly changed. In
some productions unneeded keywords were deleted, a few productions were
changed more invasively. In summary, the automatically generated syntax based
on HUTN provided guidance for refinement and tailoring of the syntax specifi-
cation.

From the tailored CS specification, EMFText derives a context-free gram-
mar which is exported as an ANTLR grammar specification. In accordance to
the inheritance structure in the metamodel alternatives are derived to express
the interchangeability of a type’s subtypes. The ANTLR specification is also
annotated with semantic actions to instantiate the model-representation for the
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parsed expressions. Finally the ANTLR tooling is used to generate the imple-
mentation of the lexer and parser. The LOC-ratio between a CS-Specification
and the resulting ANTLR grammar is about 1 : 10.

As a second implementation artefact, a pretty printer is generated from the
syntax specification. This printer transforms a given model to its textual repre-
sentation. Often special layout conventions which do not interfere with language
syntax and semantics are used to provide a more readable and comprehensive
syntax. Two constructs can be used in CS specifications to incorporate these
layout conventions. First, the LineBreak element (!<n>) causes a line break
during printing and an indentation in the next line to a level of <n>. Seconds,
the Whitespace elements ]<n>) inserts <n> whitespaces during printing. Using
these constructs is optional.

Evolving the Concrete Syntax During the development of the FeatureMap-
per we faced several situations where the feature metamodel had to be adapted.
Such an evolution is a common issue in language development. However changes
in a languages metamodel necessitate the co-adaptation of its textual syntax. A
concrete example for the feature metamodel was the introduction of Attributes
for Features (cf. Fig. 5).

To adapt the tailored textual syntax for feature models in accordance, the CS
specification is automatically extended by EMFText with an additional HUTN-
based syntax rule for Attributes. In addition, the syntax rule in Line 3–6 of
Figure 4 has to be extended to include Attributes in Features. We decided not
to automate the inclusion of a corresponding containment reference, since the
rule was already tailored. Instead, EMFText adds a warning to the CS specifica-
tion to inform the developer of the necessary syntax refinement. This exemplifies
how derivation and stepwise refinement helps the co-adaptation of TS for evolv-
ing languages.

4.2 Resolving References in UML State Machines

Our second example defines a textual syntax for UML State Machines. It uses
on an existing UML metamodel implementation that can be found at [13]. List-
ing 1.3 specifies a text syntax for state machines and Fig. 6 shows an exemplary
state machine opened in the EMF text editor. Note that the metamodel defines
Vertex as a superclass of State, FinalState and the initial state (represented
as Pseudostate if kind initial). Thus, their productions can be alternatively used
for the non-terminal subvertex in Line 5. Since the syntax defined in Listing 1.3



1 SYNTAXDEF statemachine FOR <http://www.eclipse.org/uml2/2.1.0/UML>
2 START StateMachine
3 RULES {
4 StateMachine ::= "StateMachine" name[] "{" region "}" ;
5 Region ::= subvertex* "transitions" "{" transition* "}";
6 State ::= "state" name[] "{" ("entry" ":" entry)? ("exit" ":" exit)?
7 "do" ":" doActivity "}" ";";
8 Pseudostate ::= kind[] "state" name[] ";";
9 FinalState ::= "final" "state" name[] "{" ( "entry" ":" entry )?

10 ( "exit" ":" exit )? "do" ":" doActivity "}" ";";
11 Transition ::= source[] "->" target[] "when" trigger
12 ( "do" ":" effect )? ";";
13 Trigger ::= name[’"’,’"’];
14 Activity ::= name[’"’,’"’];
15 }

Listing 1.3. Concrete syntax for UML state machines

concentrates on state machines, only the name of an Activity (Line 14) can be
specified (and no further details).

In contrast to the metamodel for feature models—which defined a strict tree
structure, by only utilising containment references (represented by filled dia-
monds in Fig. 3)—the UML metamodel also utilises non-containment references.
Non-containment references are used when an element should point to an element
that is defined elsewhere.

In a CS specification, terminals can be defined for non-containment references
in the same way they are defined for attributes. A token parsed for a terminal
represents the name of the referenced element. These names have to be resolved
to the actual elements. In the UML state machine syntax, the non-containment
references source and target of Transition (Listing 1.3, Line 11) are used.

Fig. 6. A UML state machine edited using it’s concrete syntax in the EMFText editor



Default Reference Resolving EMFText provides a default algorithm to re-
solve references. It uses type information provided by the metamodel to find
candidates in the parse tree (e.g., the target of a Transition must be a State).
Further, it compares the name of each candidate with the terminal representing
the reference to find a match. For that the candidates need to provide a name
attribute. For every match found, the terminal is replaced with a direct reference
to the found element (a State in this example). During pretty printing, the ref-
erences are de-resolved. That is, the referenced object is replaced by a terminal
constructed from the name attribute.

Tailoring Reference Resolving By default, a name attribute is expected to
identify the referenced element unambiguously. For models defined in a large
language like UML, this convention does not always apply. For instance, the
doActivity containment reference of State is of type Behaviour (Listing 1.3,
Line 10). Activity and State are two subclasses of Behaviour. Thus, the UML
metamodel for state machines allows to specify the behaviour of a state by em-
bedding a subordinated state machine. In the state machine in Figure 6 for
example, there are two States named start (Lines 2 and 7). UML specific scop-
ing rules apply for the visibility of States to avoid name clashes between nested
machines. Naturally, the default resolving does not know these rules and there-
fore requires customisation.

For this purpose, EMFText provides the means to flexibly adapt the se-
mantics for matching a name with potential reference candidates. For every
non-containment reference a ReferenceResolver with two template methods,
doResolve() for resolving and doDeResolve() for de-resolving, is generated. By
default, the methods call their super implementation which implements the de-
fault reference resolving behaviour defined above. Hence, a developer can extend
or override the default behaviour in this methods. In successive generation steps,
the already generated and adapted resolvers are not overwritten.

In the case of our simplified UML state machines two references need to
be resolved. Thus, two resolvers: TransitionSourceReferenceResolver and
TransitionTargetReferenceResolver are generated by EMFText. Both can
be implemented in a uniform manner. Listing 1.4 shows the implementation of
the doResolve() method for the latter. Every ReferenceResolver extends the
generic type AbstractReferenceResolver<T> which gets bound with the type
the resolver is meant to resolve (in this case Transition). The parameters for
doResolve() include the name to be resolved, the container of the unresolved
reference (in this case Transition), the boolean parameter resolveFuzzy, and
a ResolveResult into which results of the resolution as well as error or warning
messages can be placed. In Lines 5–15 only Vertices that are defined within
the same Region as the current Transition are considered. This realises the
scoping.

If the resolveFuzzy flag is turned on, the proxy resolver is asked for all
elements that might match the given name. This is used by the text editor to
collect suggestions for code completion. Figure 6 shows the completion propos-



1 public class TransitionTargetReferenceResolver extends AbstractReferenceResolver<Transition> {
2 ...
3 protected void doResolve(String name, Transition container,
4 boolean resolveFuzzy, IResolveResult result) {
5 for (Vertex targetCand: container.getContainer().getSubvertices()) {
6 if (resolveFuzzy) {
7 if (targetCand.getName().startsWith(name)) {
8 result.addMapping(targetCand.getName(), targetCand);
9 }

10 } else {
11 if (targetCand.getName().equals(name)) {
12 result.addMapping(identifier, targetCand);
13 }
14 }
15 }
16 if (result.isEmpty()) {
17 result.addError("Vertex " + name + " not defined");
18 }
19 }
20 }

Listing 1.4. TransitionTargetReferenceResolver implementation

als for transitions starting with “st”. Fuzzy resolution usually differs only slightly
from exact resolution. In the example (Listing 1.4) only equals() (Line 11) was
exchanged for startsWith() (Line 7). If a developer does not care about fuzzy
resolution and code completion, the flag can simply be ignored. The default
resolvers, however, do implement fuzzy resolution. Thus, code completion is pro-
vided out of the box for all cases were the default resolution is not overridden.
For de-resolving the default implementation can be kept here. If defined anyway,
the code would consist of a statement that reads the name attribute of a given
State and returns it.

Tailoring Token Resolving EMFText also supports to tailor the mapping
of tokens (i.e., strings) to attribute values in the model. For instance, an input
string valued yes (no) can be converted to the boolean value true (false).
As this is a bi-directional mapping (from tokens to attribute values and vice
versa), we call the two complementary processes resolving and de-resolving. For
each token type, a TokenResolver is generated in which additional conversion
rules can be implemented. Note that this is only needed for special mappings.
Common conversions (e.g., for numbers) are already available.

5 Related Work

As discussed in [14], both generic and custom textual syntax can be benefi-
cial for different application scenarios. Consequently, a variety of different TS
tools and approaches exist. Some provide TS based on metamodelling languages
(e.g., [14]), while others are explicitly designed for the specification of custom
syntaxes. Goldschmidt et al. [15] presented a comprehensive overview of existing
approaches and classified them within a multi-faceted classification schema.



In contrast to existing approaches, which either focus on one type of syntax
or the other, our approach and the presented implementation (EMFText), was
designed with the combined focus on refinement, derivation and evolution. Thus,
it combines the strengths of both types of syntaxes. Presenting the differences
between EMFText and all other approaches in detail is beyond the scope of
this paper. Nonetheless, we will compare EMFText according to the classifica-
tion in [15] with determined tools that share most of EMFText’s concepts and
architectural decisions and are thus most related to our work.

Rose et al. [14] presented an implementation of the generic syntax HUTN.
The problems adressed by this implementation (rapidly changing metamodels)
can be countered with EMFText as well. The tooling generated from a HUTN
syntax specification that can be automatically derived by EMFText is very sim-
ilar to the one provided by [14]. However, we allow users to refine this syntax
where appropriate, which is not possible with a pure HUTN implementation.
Furthermore, we can automatically generate syntax for new meta classes, keep-
ing the customised syntax for existing ones.

The definition of customised syntax is supported by variety of tools. To our
knowledge none of these tools provides support to either derive, refine or evolve
syntax definitions. However, there is more differences we want to mention here.

Similar to EMFText, TCS [16] has a tight coupling between the mapping
definition and the metamodel, which facilitates the definition of a syntax. It
provides a generic editor for registered syntaxes, including syntax colouring,
error marking, and navigation to underlying model elements. However, the latter
comes at the price of a mandatory base class for all metamodel elements handled
by the TCS editor. This is a limitation compared to EMFText’s implementation
which stores information regarding column and line numbering externally.

Sintaks [17] is built upon the Kermeta metamodelling facility and uses a con-
crete syntax metamodel to generate transformations between text and models.
In contrast to EMFText the mapping between syntax rules and metamodel ele-
ments is explicit. The concrete syntax has to be specified via an EMF tree-based
editor, which is not as convenient as using our specification language CS.

TEF [18] uses an interpretative approach (in contrast to the generative ap-
proach used in EMFText). Additionally, each rule needs to be associated ex-
plicitly with classes and properties of the metamodel using metamodel bindings.
This differs from the implicit mappings used in EMFText which facilitates much
shorter mapping descriptions. TEF supports background parsing and a Model
View Controller (MVC) update strategy.

Monticore [19] supports an integrated specification of concrete and abstract
syntax. It provides similar editing features as EMFText. Because of its integrated
approach, Monticore is well suited to define a metamodel and an editor for a
given textual language. This is a clear difference to our approach which targets
to easily derive and refine concrete textual syntax for existing metamodels.

XText [20] is tightly integrated with EMF and is based on ANTLR. As Mon-
ticore, XText provides an integrated specification language and similar editing



features as EMFText. However, neither it can be used to define more than one
syntax per metamodel nor it allows to compose syntax for existing metamodels.

6 Conclusion

In this paper we presented a novel approach for defining textual concrete syntax
for modelling languages based on derivation and refinement. We introduced the
conceptual foundation for that approach and presented its implementation in
the tool EMFText. Finally, we showed usage and applicability of approach and
tool on different examples. EMFText allowed us to quickly define several text
syntax for two modelling languages. The possibility to start with a generated
default syntax but having all the customisation options turned out to be very
helpful—in particular for first-time users.

In the future, we plan to extend our text editor and investigate further us-
ages of the concrete text syntax. The tight integration with EMF and Eclipse
can be extended to connect to other functionality which profits from textual
representations, like diff and merge in version control. We also plan to improve
EMFText to support a more declarative specification language for name analy-
sis. The language will provide adequate support to declare different namespaces
and scoping rules.

Currently, our tool implementation relies on ANTLR to generate parsers.
However this imposes some restrictions: As a recursive descent LL(*) parser
generator it does not support general left recursive grammars [4]. Furthermore
ANTLR parsers use an extra scanner component to convert input character
streams into token streams which may cause conflicts when composing syntax
definitions with intersecting token definitions. To improve EMFText in these
directions we plan to support alternative backends such that parser generators
can be exchanged accordingly. The effort of transforming left recursive grammars
into right recursive ones can then be avoided by switching to a tool that can
handle left recursive grammars, for example a LR based parser generator [4].
Moreover, a scannerless parsing approach can be applied to prevent conflicts
between token definitions [21].

Furthermore, we will define and analyse TS for more languages to find pos-
sible improvements to our approach. One direction here is to utilise EMFText
for type-safe code generation—using model-to-model transformations and EMF-
Text’s ability to print models into text. Another, yet related, idea is to extend
metamodels to obtain type safe template languages. We have done work into this
direction in [22]. The question here is how a TS can be automatically extended
along with a metamodel.
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143–158

22. Henriksson, J., Heidenreich, F., Johannes, J., Zschaler, S., Aßmann, U.: Extending
Grammars and Metamodels for Reuse: The Reuseware Approach. IET Software
2(3) (2008) 165–184


