
Großer Beleg

Development Of Invasive Composition

Systems

For Different Languages Based On Ecore —

The Metamodel Of The Eclipse Modeling

Framework

submitted by

Jendrik Johannes

born 3-26-1981 in Uelzen

Technische Universität Dresden

Fakultät Informatik

Institut für Software- und Multimediatechnik

Lehrstuhl Softwaretechnologie

Supervisor: MSc Jakob Henriksson

Professor: Dr. rer. nat. habil. Uwe Aßmann

Submitted June 8, 2006

Contents

1 Introduction 1

1.1 The Topic . 3

1.2 The Structure Of This Document . 4

2 Background 5

2.1 Languages And Models . 5

2.1.1 Models . 6

2.1.2 Metamodels And Megamodels . 7

2.1.3 Two-Layered Models . 9

2.2 Invasive Software Composition . 9

2.2.1 Universal Genericity And Extensibility 11

2.2.2 In-line Template Expansion . 11

2.3 Eclipse And The Eclipse Modeling Framework 12

2.3.1 The Eclipse Platform . 12

2.3.2 EMF And Ecore . 13

3 Language Modeling And Processing 17

3.1 Describing Languages With Ecore . 17

3.1.1 Modeling Common Language Concepts In Ecore 17

3.1.2 Ecore And EBNF . 18

3.1.3 Abstract Vs. Concrete Syntax . 20

3.2 Introducing ISC Concepts To Language Core-Models 20

3.2.1 Describing A Reuse Language With EBNF 22

3.3 Composition By Tree Rewriting . 23

3.4 A Megamodel Of Language Models . 25

4 Tool Implementation 27

4.1 Tool Structure . 27

4.2 The E-CoMoGen Foundation . 27

4.2.1 The Central Packages In Ecomogen.jar 29

4.2.2 The E-CoMoGen Core Plugin . 30

4.3 EMF Code And Parser Generation . 30

4.4 Hooking Into Eclipse — The E-CoMoGen IDE 31

i

Contents

5 Language Examples 33

5.1 An Imperative Programming Language — Graal 33
5.1.1 Introducing A Component Model 34
5.1.2 Defining A Composition Language 34
5.1.3 A First Composition Example . 35
5.1.4 An Enhanced Composition Language 37
5.1.5 A Second Composition Example 37

5.2 A Language From The Semantic Web Domain — Xcerpt 38
5.2.1 Reuse-Xcerpt . 39

5.3 Towards Language Composition — EBNF 41
5.3.1 Reuse-Graal Composed . 42

6 Outlook 45

6.1 Semantics Of Languages . 45
6.2 Automatic Component Model Generation 46
6.3 The Relationship Between Reuse And Core Language 47
6.4 Further Development Of E-CoMoGen . 48

7 Conclusion 49

A EBNF Grammar Of EBNF 51

B EBNF Grammar Of Reuse-Graal 53

C EBNF Grammar Of Reuse-Xcerpt 55

Bibliography 59

ii

List of Figures

1.1 Two example programs. 1
1.2 A small imperative programming language described by two models. . . . 2
1.3 The language extended with a new construct. 3

2.1 A metalanguage relationship. 6
2.2 The MOF and UML in the OMG’s four layer metamodel architecture [10]. 6
2.3 The RepresentationOf, ElementOf and ConformsTo relationship. 7
2.4 A megamodel of language modeling using EBNF and UML + MOF. . . . 8
2.5 A language L modeled in UML. The model is divided into two layers. . . 9
2.6 Language models as compositions of two layers. 9
2.7 Two fragments are composed. 10
2.8 A fragment box is bound directly into a composition program. 11
2.9 The Eclipse Platform: A composition of plugins. 12
2.10 MOF and EMF modeling in the four layer metamodeling hierarchy. . . . 14
2.11 Ecore kernel — a model of the Ecore kernel language. 14
2.12 Relations of a core-model and generated Java code. 15

3.1 The basic-language-concepts-core-model. 17
3.2 The complete core-model of the language from Figure 1.2 19
3.3 The basic-language-concepts-core-model enhanced with the ISC concepts. 21
3.4 Special sequences in an EBNF grammar. 23
3.5 An EBNF grammar with invasive composition constructs. 24
3.6 A composition is executed by merging syntax trees. 24
3.7 A megamodel of languages and their relations in Ecore language modeling. 26

4.1 The structure of the E-CoMoGen tool. 28
4.2 From an EBNF grammar file to a language plugin. 31
4.3 Composing a composition program and fragment components. 32

7.1 The megamodel of all systems this thesis is about. 49

iii

1 Introduction

Many of today’s languages used in software engineering have bad built-in support for
software composition. It is important for software engineering to provide languages
and tools to define, reuse and compose software components [1]. Still, many languages
available today for programming, modeling, markup, scripting and rule writing do not
support a proper way of defining components — a component model. They do not
include concepts about how to compose components — a composition language — and
thus there are no tools for these languages to execute compositions —a composition
technique. A component model, a composition language and a composition technique
make up a composition system [2].

Extending an existing language by a component model, to make it usable as a part
of a composition system, could redeem the original language’s weakness. Figure 1.1
shows a small program written in a simple programming language and one written in
an extension of that language, which allows the definition of variation points.

1 program {

2 x := 2;

3 y := 5;

4

5 z := 3 * x;

6 }

(a)

1 program {

2 x := 2;

3 y := 5;

4

5 z := 3 * <<genericvar >>;

6 }

(b)

Figure 1.1: A program written in a simple programming language (a) and one written
in an extension of that language (b). <<genericvar>> is a variation point where
any variable name can be inserted when a composition is executed.

The Java and the XML language were successfully extended and deployed in a compo-
sition system (the COMPOST Framework [3]) by using the concepts and techniques of
Invasive Software Composition (ISC) [2]. In the COMPOST Framework, the language
extensions were implemented manually for the two supported languages. By formalizing
the ISC concepts and techniques, a tool can be implemented which can extend any given
language by a component model and deploy it in a composition system.

When working with different languages, it greatly facilitates if the languages are de-
scribed in a common way. One popular way to describe the syntax of a language is
EBNF [4]. A widely accepted approach in software engineering is to describe a system
using models. UML [5] is the most wide-spread language today to define models. Lan-
guages are systems themselves and can thus be described by models. In fact, an EBNF

1

1 Introduction

grammar of a language is a model of that language. By describing the same language
with the UML class diagram notation, one has another model of the language. Figure
1.2 shows two models of the same language.

1 program = "program ",

2 "{", {assignment }, "}";

3

4 assignment = variable ,

5 ":=", expression , ";";

6

7 expression = integer | binary |

8 variable ;

9

10 binary = "(", expression ,

11 operator , expression , ")";

12

13 operator = "+" | "-" | "*" | "/";

14

15 integer = ?((’0’..’9’)+)?;

16

17 variable = ?((’a’..’z ’)+)?;

(a)
(b)

Figure 1.2: A small imperative programming language described by two different models:
An EBNF grammar (a) and a UML class diagram (b). The program from
Figure 1.1a is written in this language.

Different ideas about language modeling were presented in [6]. While it succeeded to
model abstract syntax and static semantics of languages and gives ideas about extending
these language models to integrate composition support, it does not go deeper into the
concrete execution of composition.

This thesis focuses around the extension of languages to support composition and its
concrete application. The objective is to implement a tool which supports language ex-
tensions development as well as the processing and writing of programs and components
in extended languages. To make an extended language usable, tools such as an inte-
grated development environment (IDE) are needed. The popular Eclipse Platform [7],
part of the open source Eclipse Project [8], is an excellent foundation for a customized
IDE. Since it is desired to generate language tools automatically, another part of the
Eclipse Project, the Eclipse Modeling Framework (EMF) [9], can also be deployed. It
can generate code out of models based on the OMG’s Meta Object Facility (MOF)
modeling approach [10] and should therefore allow code-generation based on language
models.

For MOF language modeling, the two-layered language modeling approach from [6] can
be reused. It divides a language model into two layers such that all language constructs
situated on the lower layer are based on concepts of the higher layer. All language

2

1.1 The Topic

models are based on the same higher layer, where concepts found in all languages are
described. The model shown in Figure 1.2b contains such an upper layer of language
concepts.

The concepts of invasive software composition can be introduced to the language
models’ upper layer. Any additional construct in an extended language will be based on
an ISC concept (Figure 1.3). A tool which is aware of the common upper layer and knows
how to resolve ISC based constructs in a generic way could execute the composition of
programs written in any extended language. The only information such a tool would
need is a model of the extended language that includes the common upper layer.

1 program = "program ",

2 "{", {assignment }, "}";

3

4 assignment = variable ,

5 ":=", expression , ";";

6

7 expression = integer | binary |

8 variable | variable hook;

9

10 binary = "(", expression ,

11 operator , expression , ")";

12

13 operator = "+" | "-" | "*" | "/";

14

15 integer = ?((’0’..’9’)+)?;

16

17 variable = ?((’a’..’z ’)+)?;

18

19 variable slot =

20 "<<", slot identefier , ">>"

21

22 slot identifier = ?((’a’..’z ’)+)?

(a)
(b)

Figure 1.3: The Language extended with a new construct to support generic vari-
able names. This new construct is based on the upper layer concept
LCSlotDeclaration. The program from Figure 1.1b is written in this language.

1.1 The Topic

Building a tool for invasive software composition using the Eclipse Modeling Framework
combined with a two-layered language modeling approach (as in [6]) looks promising.
Therefore, this work will develop a two-layer language modeling approach based on
MOF. It will describe the design of a generic ISC processing tool based on the Eclipse
Modeling Framework and its code generation facilities. The result will integrate into
the Eclipse Platform and be ready for further development into a full featured IDE to

3

1 Introduction

write programs and components in extended languages. The tool will be referenced to
as E-CoMoGen1 [11].

1.2 The Structure Of This Document

This thesis starts out with the initial ideas of a generic ISC tool, continues to describe
the design of the tool and finally demonstrates the ready-to-use implementation with
several examples. Chapter 2 introduces and explains modeling techniques used during
development and runtime of the tool and also introduces the technologies which the
tool is based on. The core functionality — processing of languages — and how it is
modeled is described in Chapter 3. The overall structure of E-CoMoGen is documented
in Chapter 4. Chapter 5 demonstrates its functionality by applying it to different formal
languages.

1Eclipse Component Model Generator

4

2 Background

As stated in the introduction, this work is based on a modeling technique for languages
— the two-layered language modeling approach introduced by [6] — and a technology
— the Eclipse Modeling Framework [9]. To use the given modeling technique with
the technology, this technique has to be applied to models the technology understands.
Therefore, Section 2.1 examines how to define two-layered models in MOF-based model-
ing and discusses the meaning and relation of the terms language, metalanguage, model
and metamodel in this context.

To extend languages and use them for composition, the concepts of invasive software
composition, including genericity and extensibility, have to be introduced. That is done
in Section 2.2.

Before looking at the design of the tool, one should have an understanding of the
technology that is used. Therefore, an introduction into Eclipse and the Eclipse Modeling
Framework is given in the Section 2.3.

2.1 Languages And Models

EBNF is a language in which context free grammars of other languages are written.
Such languages are called metalanguages. Consider, for example, a program X, written
in the language L, which grammar is written in the language EBNF. Then, EBNF is
the metalanguage of L (Figure 2.1).

UML class diagrams are often referred to as models of a software system that is
(going to be) implemented. The UML language itself is formally described by the UML
metamodel which is modeled using the Meta Object Facility (MOF), which description
is modeled by MOF itself. This leads to the OMG’s four layer metamodel architecture
visualized in Figure 2.2.

Often, the exact meanings of the words model and metamodel (and meta-metamodel)
are not defined. In the OMG’s definition, all seems clear at first. But is the UML
metamodel always a metamodel? Or is that a question of point of view? EBNF is a
language to describe L, which makes it also a metalanguage when recognizing that L is
a language in itself. Maybe then the UML metamodel is a model of something, and a
metamodel of something else? Maybe sometimes it is not a model at all? What exactly
is a model and how do models relate to languages?

This section aims at giving clear answers to these questions, which are needed for
the rest of this work. Therefore, the terminology of metamodels introduced by Favre
[12, 13, 14] will be explained and used.

5

2 Background

EBNF
Language

EBNF Grammar
of L

L
Language

Program X

language of

language of

describes

metalanguage of

Figure 2.1: A metalanguage relationship.

M3

M2

M1

M0

UML
Metamodel

MOF

UML Class
Diagram

(Real World)
Object

conforms-to

conforms-to

conforms-to

Figure 2.2: The MOF and UML in
the OMG’s four layer meta-
model architecture [10].

2.1.1 Models

Favre defines the term model as a role a system1 can play, implying that nothing is
a model in general. A system plays the role of a model when it stands in relation to
another system, which then plays the role of a system under study (SUS). The model
gives answers about the SUS without the need to consider the SUS directly. The model
is by no means required to give all answer about the SUS. Thus, in many cases, it is
applicable to have more than one model for a SUS, which can give answers to different
aspects of the SUS.

• The EBNF grammar of the language L is just an element of the EBNF language2

in the first place. When seen in relation to the language L, the EBNF grammar
of the language L is a model of the language L.

• A UML class diagram is a model of a real world system that the software is about
to simulate, as well as it is a model of the implemented software.

• The UML metamodel is a model of the UML language.

• This text is a model of the E-CoMoGen tool since it describes many aspects of its
functionality.

Note that the E-CoMoGen tool will have other models despite of this text. Tutorials
and documentations on the website can also play the role of a model for E-CoMoGen.

1Systems are the primary elements in modeling. Everything is a system.
2When talking about a languages we refer to the (possible infinite) set of all valid sentences of the

language.

6

2.1 Languages And Models

2.1.2 Metamodels And Megamodels

So where do metamodels come into play? To clarify relationships between systems
(like the model-to-SUS relationship), Favre introduced the concept of megamodels. A
megamodel consist of systems and relations between them. There are two relations
already familiar to us. Here, Favre’s notation is adopted.

• µ - RepresentationOf, model / SUS. Figure 2.3a. A model represents a system
under study and gives answers about it.

• ε - ElementOf, element / set. Figure 2.3b. A program written in the Language
L is an element of the L language (while the language is the, possible infinite, set
of all possible L programs).

In some megamodels one can find meta-step patterns, which are characterized by the
combination of two µ and one ε relation as illustrated in Figure 2.3c. This pattern leads
to a new relation χ as a combination of µ and ε, describing the relation between a model
and its metamodel. Note that the χ relation requires both µ relations to exist in order
to identify both its ends as models.

• χ - ConformsTo, conformant model / metamodel.

L
Language

EBNF Grammar
of L μ ▼

model

system

under study

(a)

L
Language

Program X

ε

▼

set

element

(b)

���������
Program X

ε

▼ ��� ��	or
��
��
μ ▼

EBNF Grammar
of L μ ▼

χ

▼

metamodel

conformant model

(c)

Figure 2.3: The RepresentationOf (a), ElementOf (b) and ConformsTo (c) relationship.
(c) as a whole is the appearance of a meta-step pattern.

Figure 2.4 shows a megamodel containing the languages previously discussed in this
chapter. In the scenario there are two models of the language L. As in the introductory
example, one is described in EBNF and one in UML. It is not further defined which
language is used to describe EBNF itself. However, it could also be EBNF or UML.

The relation between the four layer metamodel architecture (Figure 2.2) and meg-
amodels gets clarified by looking at meta-steps. There are two meta-steps in the meta-
model architecture, which correspond to a layer change (there is no meta-step between
the two lowest layers):

7

2 Background

1. possible runtime object states ◭µ UML diagram χ◮ UML metamodel

2. UML language ◭µ UML metamodel χ◮ MOF

The fixed position is assumed that the runtime objects on the lowest layer are never
models. In that case, all the UML diagrams on the next layer are models3 (and never
metamodels) and the UML metamodel on the layer above is always a metamodel for
those models. In this understanding, the term UML metamodel makes sense.

UML
"Metamodel" �

ε

▼

UML
Language

UML Diagram
of L

▼

MOF
Language

ε

▼

MOF
μ ▼

▼ε

L
Languageμ ▼

Program X

ε

▼

EBNF
Language

μ

▼

Runtime States
of Xμ

EBNF Description
of L

▼

A Runtime
Object of X

ε

▼

ε

▼

Description
of EBNFμ

▼

χ

▼

χ

▼

χ

▼

χ

▼ χ

▼

Figure 2.4: A megamodel of language modeling using EBNF and UML + MOF.

In the megamodel illustrated in Figure 2.4, there are three meta-steps in a row:

1. runtime states ◭µ program χ◮ UML language diagram

2. L language ◭µ UML language diagram χ◮ UML metamodel

3. UML language ◭µ UML metamodel χ◮ MOF

The reason for this is that the particular UML diagram here models a language.
Therefore, the program, which is an element of that language, is situated one layer
below the language diagram (while a diagram of the program would be situated at the
same layer as the program itself).

3A UML diagram is commonly interpreted as a model (µ) of the code of an implementation but it
can also be interpreted as a model (µ) of all possible runtime states, which a runtime object is an
element of (ε). Then the argument holds that it is always a model and never a metamodel, because
the runtime objects are never models (and the meta-step pattern does not occur).

8

2.2 Invasive Software Composition

During the design of an ordinary software system, such a detailed understanding of
relations between models and metamodels is unnecessary (the runtime objects are never
models). However, when designing software that should deal with software itself (where
the runtime objects are models as well), the flexibility offered by megamodels helps to
clarify the model, metamodel and other relationships between systems.

2.1.3 Two-Layered Models

Following the modeling approach from [6], a language model consists of two layers. The
layers inside the model are independent of the layers in the metamodeling architecture,
where the model as a whole keeps its position on one layer (Figure 2.5). Similar ideas
are presented in [15] and [16].

To indicate the layering inside a model in a megamodel, the δ relation is used:

• δ - DecomposedIn, composite / part. A complex system is a composition of
its parts.

A two-layered language model is the composition of its layers. The upper layer is
part of every language model. A lower layer with individual language constructs can be
found in every language model (Figure 2.6).

M3

M2

M1

 UML
metamodel

MOF

Basic Language
Concepts (UML)

L Language
Constructs (UML)

�▼�▼ ▼ �
Figure 2.5: A language L modeled

in UML. The model is
divided into two layers.

Java Language
Description

μ ▼Java
Language

L
Language

Program X

▼

L Language
Description

μ

Basic Language
ConceptsJava Language

Constructs

δ

L Language
Constructs

δδ
δ

▼▼

Program J

composite composite

partpart

ε

▼

ε

▼

▼

part part

▼

Figure 2.6: Language models as compositions of
two layers.

2.2 Invasive Software Composition

A composition system consists of the following three major parts:

• A component model — What do components look like? What interface do they
provide for composition?

9

2 Background

• A composition technique — How are components connected (composed)?

• A composition language — A language which allows to write down composition
programs, describing a composition of components.

Invasive Software Composition (ISC) [2, 17, 18] is a flexible and universal method for
constructing software from components. Fragments are the reusable components in ISC.
A fragment is an instance of a language construct4 and is typed (the fragment’s type
is the language construct it is an instance of). Fragments may contain typed variation
points — slots — and typed extension points — hooks, where other fragments of the
correct type can be bound during composition. Slots and hooks make up the component
model of a language used for ISC.

Composing fragments invasively means that internal parts of the fragments are merged
during composition (Figure 2.7). This defines the composition technique. Usually, frag-
ments consist of source code and the internal changes are done by rewriting code.

Composition programs, written in the composition language of an ISC system, include
calls to composers, which execute the composition, and commands to load fragments
into fragment boxes (Figure 2.7). In fragment boxes, declared slots and hooks can be
addressed by the composers. Fragment boxes are typed corresponding to their content.
Composers check, upon composition, if the type of a fragment box matches the type of
the slot or hook it should be bound to. Thus, compositions are type-safe and errors can
be reported at composition time.

box1

hook

box2

box1
box2

load fragments;

bind box2 to hook in box1;

transform code;

Composition Program:

code
fragment2

code
fragment1

invasively
transformed
code

Figure 2.7: Two fragments are loaded into fragment boxes, which are composed by a bind
composer. The result is invasively transformed code based on the original
code fragments.

4An instance of a language construct (which can be defined by an EBNF rule or a class in a language
model) is a piece of code, but not necessarily a compilable unit.

10

2.2 Invasive Software Composition

2.2.1 Universal Genericity And Extensibility

Universal genericity is supported by a language (as in BETA [19]), if it allows every
piece of a fragment to be kept unspecified — generic — upon fragment definition [18].
These generic parts can later be filled by other fragments. This concept can be simulated
in ISC by allowing a slot declarations for every possible language construct.

A language that has the possibility to extend every collection-like language construct5

by additional fragments is called universally extensible. In ISC this concept is simulated
when hooks are added to every instance of a collection-like language construct.

2.2.2 In-line Template Expansion

To ease component development, the composition technique can be enhanced by in-
line template expansion [18]. In in-line template expansion, composers do not need to
explicitly address a slot or hook to bind a fragment. Instead, a composer call acts as a
slot itself. The fragment is then bound to the position where the composer call occured
(Figure 2.8).

As a consequence, composer calls are allowed inside fragments, which requires a merge
of the composition language and the language fragments are written in. This helps to
write and to understand composition programs in the context of the composition as
shown in Example 5.1.5.

box2
composition
program
box

load fragments;

bind box2 inline;

transform code;

load fragments;

transform code;

fragment2box2
composition
program
box inline-bind

code
fragment2

Figure 2.8: A fragment box is bound directly into a composition program.

5A language construct, which allows for an arbitrary long list of other language constructs (e.g. a list
of variable declarations), is collection-like.

11

2 Background

2.3 Eclipse And The Eclipse Modeling Framework

Eclipse [8] is an open source community focused on developing an open development
platform (Eclipse Platform [7]) and application frameworks. The Eclipse Platform pro-
vides an highly flexible plugin mechanism which makes it easily extensible. This qualifies
it as an excellent base for our implementation. The Eclipse Modeling Framework (EMF)
[9] is one of the application frameworks developed by the Eclipse community. It defines
its own metamodel — Ecore — for modeling, which design is highly influenced by the
OMG’s MOF specification, as it itself influenced the newest version of the specification
[10].

In this chapter, the advantages gained by implementing an Eclipse based language
modeling and processing system will be discussed. Furthermore, it explains how EMF
can be used to generate code from MOF-based language models.

2.3.1 The Eclipse Platform

Figure 2.9: The Eclipse Platform: A composition of plugins. New plugins plug into the
platform and into other plugins — a new editor as well as different parts of
E-CoMoGen.

While the Eclipse Platform [7] can be used as the core of any tool or program, its
full potential unfolds when it is used as the foundation of an IDE. The most prominent
example is the Eclipse JDT (Java Development Tools) [20], which is one of the leading
Java IDEs today.

Another Eclipse-based IDE is the Eclipse PDE (Plugin Development Environment)
[21], which supports the developer in the process of writing plugins for the Eclipse
Platform. The principles of the plugin concept are simple. The first thing one has

12

2.3 Eclipse And The Eclipse Modeling Framework

to realize is that the whole Eclipse Platform is a composition of plugins (Figure 2.9).
Every plugin defines a set of extension-points and provides extensions to extension-
points defined by other plugins. With the definition of an extension-point, a contract
is specified. Extensions have to fulfill the contract. In the simplest case, extensions are
only required to provide a single string, but may also have to provide several Java classes
implementing certain interfaces.

A simple example inspired by the plugin-with-editor template6 stresses the eligibility
of the Eclipse Platform as a base for a new IDE and demonstrates the application of ex-
tensions to extension points. The plugin org.eclipse.ui is part of the Eclipse Platform and
provides the extension point org.eclipse.ui.editors. Writing an extension for this extension
point requires to implement the interface org.eclipse.ui.IEditorPart. That implementation
is the central class of the new editor. In its implementation, one can, for example, define
rules for syntax highlighting. The extension can also be used to specify the files the
editor is able to open. Later, when the plugin with the new extension is loaded into the
Eclipse Platform, the new editor will be opened when an appropriated file is selected.
Note that the whole process of file selection, providing a view on a file tree or opening
the file and passing it to the editor, is managed by the Eclipse Platform. So are many
other things that would need to be implemented when writing an editor from scratch.
Editors are clearly just one part of an IDE. Functionalities like building, debugging and
testing are other important functionalities which are supported by the Eclipse Platform.

It would be desirable to have an IDE in which components could be developed and
composition programs could be written. The Eclipse Platform delivers the whole infras-
tructure of an IDE written in Java, which runs on all conventional operating systems.
To create the E-CoMoGen IDE, extension to that infrastructure have to be implemented
and plugged into the Eclipse Platform (Figure 2.9).

2.3.2 EMF And Ecore

As can be guessed from its name, EMF is a Framework which supports the creation of
models. More precisely (to stick to the agreed terminology), it supports the creation of
systems which are intended to play the role of a model for a system under study. These
systems are called core-models in EMF. The metamodel for all core-models is called
Ecore. Ecore is a core-model itself (it is defined in the Ecore language7) and is therefore
its own metamodel. More precisely, a certain subset of the Ecore language (Ecore kernel
language) is used to define a model (Ecore) of the the whole Ecore language. Figure
2.11 shows an UML class diagram of the Ecore kernel.

The UML metamodel and the MOF-model of the UML metamodel are both annotated
as UML class diagrams. This can be interpreted as such: A subset of the UML language

6This template comes with the Eclipse Platform. Templates are sample implementations of extensions
and can be used as guidelines when writing an extension.

7The Ecore language — the set of all possible core-models — is defined by a model (Figure 2.11).

13

2 Background

M3

M2

M1

M0

Ecore

Ecore
Kernel

Core-Model

UML Metamodel

MOF =
UML Kernel

UML Class
Diagram

Figure 2.10: MOF and EMF modeling in the four layer metamodeling hierarchy with
conforms-to relations (χ).

(UML kernel language) is used to define a model (UML metamodel) of the whole UML
language. A model of the UML kernel language is then called UML kernel. Figure 2.10
shows the Ecore and MOF model-to-metamodel (χ) relations next to each other in the
four layer metamodel architecture.

name : String
containment : boolean
lowerBound : int
upperBound : int

EReference
name : String

EClass
name : String
EAttribute

name : String
EDataType

eAttributes

0..*

0..*

eReferences

eSuperTypes

0..*

0..1

1

1

eReferenceType

eAttributeType

eOpposite

Figure 2.11: Ecore kernel — a model of the Ecore kernel language (Figure taken from
[22]).

Even though the MOF specification is far more complex than that of Ecore, there are
a lot of obvious similarities. Mapping MOF models to Ecore models is straightforward
in many cases [23]. That statement is supported by the fact that UML class diagrams
is a common annotation for core-models8.

8There are different possibilities to define core-models. A mapping from UML class diagrams is one
of them. A direct way to define and edit core-models is a graphical editor for the Eclipse Platform,
which was employed for the implementation of E-CoMoGen.

14

2.3 Eclipse And The Eclipse Modeling Framework

Java code can be generated from core-models, resulting in a Java system which then
plays the system-under-study role with respect to the core-model (Figure 2.12). The code
generation is not examined here in detail. However, it is important to note that every
class in the core-model will have a corresponding Java class implementation. It offers
reflective methods by subclassing common EMF classes, which allows for examination
and processing of runtime objects (conformant to a core-model) without knowledge of
the concrete core-model. This is extremely helpful in an implementation which should
be able to process language models unknown at implementation time.

Core-Model
μ ▼

Generated
Java Classes

Ecore
Language

ε

▼

Core-Model
of Ecore μ ▼

▼ε

Possible
Runtime Statesμ ▼

Java Object

ε

▼

μ ▼

Figure 2.12: Relations of a core-model, generated Java code and runtime Java objects
in a megamodel.

15

3 Language Modeling And Processing

This chapter describes how to create language models which can be processed by E-
CoMoGen. A special emphasize is put on the modeling of invasive composition concepts
and how E-CoMoGen can understand these concepts in order to execute the composition
of components written in an extended language.

3.1 Describing Languages With Ecore

The previous chapter showed how languages can be modeled in a MOF modeling struc-
ture and also pointed out the similarities between MOF and Ecore. This knowledge is
used in this section to derive a common structure for Ecore language models.

3.1.1 Modeling Common Language Concepts In Ecore

A core-model, called the basic-language-concepts-core-model (blc-core-model) (Figure
3.1), is defined, and it will be the upper layer of every language core-model. The classes
in this model (the concept-classes) represent concepts common to all languages. Every
construct-class1 in a language core-model has to subclass one of these concept-classes
and fulfill certain restrictions associated with it.

Language
Construct

LCAggregate LCChoice

String terminal
LCTerminal LCSubConstruct

Figure 3.1: The basic-language-concepts-core-model.

The model is simple: The concept-classes merely have attributes or relations to each
other. Nevertheless, the model is useful and necessary because of the restrictions associ-
ated to every concept-class. LanguageConstruct is the base class all other concept-classes

1A class representing a language construct.

17

3 Language Modeling And Processing

inherit from. Below it are the three concept-classes LCAggregate, LCChoice and LCTer-
minal, as well as the additional concept-class LCSubConstruct. Every construct-class in
a language core-model will subclass from these concept-classes. A construct-class can ei-
ther be an aggregation of construct-classes (LCAggregate), a choice of construct-classes
(LCChoice) or a representative of terminal symbols (LCTerminal). Additionally, aggre-
gated construct-classes may contain sub-construct-classes (LCSubConstruct), which can
not exist on their own.

The concepts behind the concept-classes are examined in detail in the next section.
The restrictions they demand have to be taken into consideration when creating a lan-
guage core-model. If the core-model is created by mapping another model (e.g. an
EBNF grammar), the restriction can be enforced by the mapping.

The blc-core-model has many similarities to the EBNF language. This is practical
since it should make it possible to describe a language in EBNF, and then map it to a
core-model. Thus, a good understanding of the concepts in the blc-core-model can be
gained by comparing it with the EBNF language.

3.1.2 Ecore And EBNF

The following list describes the main concepts behind EBNF and links each of them to
the corresponding concept in the blc-core-model.

• Language Constructs: An EBNF grammar is a set of non-terminal rules that
represent language constructs. A language core-model is a set of classes. For every
rule in an EBNF description, there is a construct-class in a language core-model.

• Identifier: In EBNF, every rule is named by a so called metaidentifier. It corre-
sponds to the name of the construct-class in the core-model.

• Terminals: A terminal is a concrete string sequence. It is annotated in EBNF
by using one of the quote symbols (’ or "). A construct-class which represents
a terminal in a core-model is a subclass of LCTerminal. It has an annotation
attached, which contains the terminal string or a regular expression representing
a set of allowed terminal strings.

• Aggregation: To allow a certain sequence of non-terminals and terminals to
occur in a program, a sequence can be defined on the right side of an EBNF
rule. A construct-class in the core-model, which corresponds to a sequence rule,
subclasses LCAggregate. It will have references to the construct-classes contained
in the sequence. A reference might have three kinds of multiplicity — one, zero to
one or any. That corresponds to the three possible kinds of sequences definable in
EBNF — sequence, optional sequence and repeated sequence.

18

3.1 Describing Languages With Ecore

• Choice: Sometimes it is desired to define two or more rules as alternatives, which
is possible in EBNF. Sublcasses of LCChoice represent such a choice in the core-
model. Every construct, which is an option in a choice, subclasses the correspond-
ing choice-construct-class. Thus, all the alternatives can take the position of the
choice-construct-class.

• Sub-Construct: An EBNF rule can be a combination of different nested se-
quences, choices and terminals. Translating such a rule to a core-model requires it
to be split up into more than one construct-class. This is the main difference be-
tween EBNF and language core-models. However, it does not lead to any problems.
These additional classes are made into subclasses of LCSubConstruct, which has
the benefit that they can be distinguished from explicitly defined constructs. This
makes mapping from Ecore to EBNF possible both ways, without any deviations
in the EBNF grammar even after multiple mappings back and forth.

In the introduction, an example of a small language was presented (Figure 1.2). Figure
3.2 shows the complete corresponding language core-model.

Figure 3.2: The complete core-model of the language from Figure 1.2

19

3 Language Modeling And Processing

3.1.3 Abstract Vs. Concrete Syntax

The concept-classes in the blc-core-model differ slightly from the ones used in the upper
layer for language models in [6]. While the differences will not be studied in detail here2

their causes are explained in this section.

The work in [6] concentrated on formal and abstract descriptions of the syntax and se-
mantics of languages. Therefore, no support for concrete syntax was integrated. For the
E-CoMoGen tool, support of concrete syntax in language models is obviously necessary.
The initial design of the blc-core-model was more strongly oriented towards the upper
layer in [6]. Currently, however, it is stronger related to EBNF as previously described.
A similar approach can be found in [24].

The question arises if a distinction between concrete and abstract syntax should be
made, which is desirable in many cases of language processing [25]. The experiences
made during the implementation showed that, for our purposes, a concrete-syntax-only
based approach is applicable for many languages. This is because not just the input, but
also the output, of the processing is written in concrete syntax. It might, however, not be
appropriate for every language. Therefore, a distinction between concrete and abstract
syntax might be desirable in future versions. That will on the other hand introduce new
challenges to the mapping from and to EBNF.

3.2 Introducing ISC Concepts To Language Core-Models

If a language should be used for invasive software composition it has to be extended by
a component model that allows for hook and slot declarations. Additionally, a compo-
sition language is needed to write composition programs that load fragments and call
composers. From now on every given language will be called a core language. A lan-
guage that is extended by new constructs to make it applicable in ISC is called a reuse
language.

The composition language can be a part of the reuse language such that commands to
load fragments into fragment boxes and to call composers can be embedded directly into
fragments and programs. This has the advantage that the technique of in-line template
expansion (Section 2.2.2) can be applied.

The following general ISC concepts for a reuse language that contains a composition
language, are derived:

• Slot/Hook Declaration: Slot and hook declaration constructs are described by
the component model of a reuse language. Every slot and every hook in a fragment
has an unique identifier. A slot may be bound once, while a hook may be bound
several times (extended), or not at all.

2Consult [6] to learn how the upper layer of language models looks there in detail.

20

3.2 Introducing ISC Concepts To Language Core-Models

• Fragment Box Declaration: A fragment box declaration is used to load a frag-
ment into a fragment box for composition. Such a construct is part of the composi-
tion language. A unique identifier is given to the fragment box and the location to
its content (the fragment) has to be provided (e.g. path to a file in the file system).
Each fragment box is typed (see Section 2.2) and a fragment box declaration has
to know the type of the fragment box it declares, since it is not necessarily revealed
by the fragment alone3.

• Composer Call: A composer call executes a composer that operates on fragment
boxes, slots and hooks and is a part of the composition language. A composer call
has to be linked to an implementation of a composer. It takes a set of arguments
which usually contains fragment boxes that should be composed and slots and
hooks that should be bound. There are two basic composers, bind and extend,
which operate on slots and hooks respectively. They can be implemented in a
generic way and work for every reuse language.

These new concepts are added to the blc-core-model (Figure 3.3). They all subclass
LCAggregate because the language constructs based on these concepts will always have
to be aggregations, as we will see in the next section.

Language
Construct

LCAggregate LCChoice

String terminal
LCTerminal LCSubConstruct

LCSlot
Declaration

LCComposer
Call

LCFragmentBox
Declaration

LCHook
Declaration

Figure 3.3: The basic-language-concepts-core-model enhanced with the ISC concepts.

3A fragment — a piece of code — can be interpreted as the instance of different language constructs
which require equal concrete syntax.

21

3 Language Modeling And Processing

3.2.1 Describing A Reuse Language With EBNF

When ISC constructs are added to a language, it is desirable to annotate this in the
EBNF grammar since EBNF grammars for many languages do already exist. ISO-EBNF
[4] defines the special sequence (? {any character} ?) as part of the EBNF language. This
kind of sequence can be used for customized extensions to EBNF. Special sequences can
be used to annotate ISC concepts and are interpreted as follows:

• Named Sequences: A special sequence that occurs as the first element of another
sequence will be interpreted as the name of that sequence

• Constant Values: The content of a special sequence that occurs at any position,
save the first, in another sequence, will be added to the syntax tree upon parsing
as if it was written down in the program.

• Regular Expressions: An exception to the definitions above are sequences of
the kind ?({any character})?. These sequences are interpreted as regular expressions
which can be used to define infinite sets of symbol sequences as a terminal symbol.
E.g. all strings containing an arbitrary number of lower-case alphabetic charac-
ters can be expressed as ?((’a’..’z’)*)?. The format of the regular expressions
corresponds to the one used in ANTLR grammars [26].

Figure 3.4 illustrates the EBNF extensions with a small grammar and a program
written in that grammar.

Some sequence names are defined to identify ISC concepts in the language description:

• slotid or hookid: The rest of a list named slotid or hookid makes up the identifier
in a slot or hook declaration. The rule which contains this sequence is then recog-
nized as a slot or hook declaration and the corresponding class in the core-model
is a subclass of LCSlotDeclaration or LCHookDeclaration, respectively.

• boxtype, boxid & boxlocation: Lists of these three names have to appear in a
rule to make it a fragment box declaration and the corresponding class in a core-
model a subclass of LCFragmentBoxDeclaration. They identify the box’s type,
identifier and location, respectively.

• composer: An occurrence of a sequence named composer in a rule makes it an
LCComposerCall subclass in the core-model and defines the composer’s implemen-
tation. Other named sequences are likely to appear in the rule, based on which
arguments the composer needs. The typical argument triple, expected by the bind
and extend composers to bind a fragment box to a slot or a hook, is: box, slot
or hook (the name of the slot or the hook in the box) and value (another box
which should be bound to the slot/hook). To use the two composers for an in-line
template expansion operation (Section 2.2.2), the value argument is sufficient.

22

3.3 Composition By Tree Rewriting

greeting = "welcome", (?nameList?, name, {",", name}), (?info?, ?to the program?),"!";

name = ?('A'..'Z' ('a'..'z')*)?;

welcome Lisa, Jack, Amy!

greeting

nameList info

"to the program" "!""welcome"

"Lisa"

"," "Jack" "," "Amy"

added
Constant Value

Constant Value

Named Sequence Named Sequence

Regular Expression

welcome Lisa, Jack, Amy to the program!

parse

print back

EBNF Grammar

Program

Figure 3.4: Special sequences in an EBNF grammar interpreted as named sequences,
constant values and regular expressions.

The values for composer and box type are typically fixed. That is why constant values
are needed. An extended example language illustrates the usage of the defined named
sequences (Figure 3.5).

3.3 Composition By Tree Rewriting

With a reuse language core-model at hand, code written in that reuse language can be
parsed into an instance of the core-model, which results in a tree of objects conforming to
the core-model’s construct-classes (the syntax tree). By examining the super classes of a
construct-class, one can identify ISC concepts. In fact, the knowledge of the super classes
is sufficient to perform composition. That is how the composition can be implemented
without knowing the language it will actually work on.

Composition is now basically reduced to tree rewriting. After the source code is
parsed, the syntax tree is traversed and the ISC constructs are identified. If a fragment
box declaration is encountered, its content is parsed into a tree as well. For composer
calls, the corresponding composer implementation is determined and executed. The
composer will then modify the syntax trees. The bind composer, for example, will take
the trees of two components, find the slot in the first component and mount the tree of
the second component to the slot’s position. The extend composer works in a similar way
on hooks. Loaded fragment box declarations and executed composer calls are removed
from the tree (Figure 3.6).

23

3 Language Modeling And Processing

program = "program", "{",
 { (assignment | var box | exp box | bind | inline bind) }, "}";

assignment = ident, ":=", expression, ";";

expression = integer | var | binary | var hook;

var = ident;

operator = "+" | "-" | "*" | "/";

binary = "(", expression, operator, expression, ")";

integer = ?(('0'..'9')+)?;

ident = ?(('a'..'z')+)?;

path = ?(('/' 'a'..'z')+)?;

var hook = "<<", (?slotid?, ident), ">>";

bind = (?composer?,?bind?), "bind", "(", (?box?, ident), ",", (?slot?, var), ",", (?value?, ident), ")", ";";

var box = (?boxtype?,?var?), "varbox", "(", (?boxid?, ident), ",", (?boxlocation?, path), ")", ";";

exp box = (?boxtype?,?expession?), "expbox", "(", (?boxid?, ident), ",", (?boxlocation?, path), ")", ";";

inline bind = (?composer?,?bind?), "inline-bind", "(", (?value?, ident), ")", ";";

Slot Id Use the
Bind Composer

Composer Arguments

Box Id Box LocationBoxtype = var

 x = 3 * <<myslot>>;

 y

program {
 varbox(vbox,/compa);
 expbox(ebox,/compb);

 bind(ebox,myslot,varbox);
 inline-bind(ebox);
}

/compa

/compb

(a)
(b)

Figure 3.5: An EBNF grammar with invasive composition constructs (a) and a program
composing two components written in that language (b).

LCFragment
BoxDeclaration

LCComposer
Call

Program

"}""{"

id locationtype value LCComposer
Call

Program

"}"

"{"

value

":=""x" "3"

CompA

"}""{"

":=""x" "3"

program {

 expbox(ebox,/compa);

 inline-bind(ebox);

}
 x := 3;

/compa

program {

 x := 3;

}

1. parse program

3. remove box
 declaration

2. parse /compa

4. remove
 composer call

5. bind CompA
 to composer
 call position

6. print back

Figure 3.6: A composition is executed by merging syntax trees.

24

3.4 A Megamodel Of Language Models

With the extensibility of introducing new composers, the ISC tool can be used for
many related composition techniques. Other more special composers could do complex
rewriting and merging of syntax trees. Composer can for example be aspect weavers or
connectors [2].

3.4 A Megamodel Of Language Models

To conclude this chapter, Figure 3.7 shows a megamodel of three languages: EBNF,
Graal4 and Reuse-Graal (a reuse language based on the core language Graal).

The interesting thing is that EBNF, Graal and Reuse-Graal can be handled equally,
since they are all languages. For all of them, two models exists — an EBNF grammar
and a core-model (the EBNF grammar of Reuse-Graal is omitted for clarity). These
two models can be mapped to each other. Once the tool is up and running, the EBNF
core-model (which is needed to describe another language) can be bootstrapped by using
an EBNF grammar of EBNF (Appendix A).

Another thing worthy of remark is that the program written in Graal and the set of
components written in Reuse-Graal are both models of the same runtime system, if the
program is the result of the invasive composition of the components. Thus, invasive
composition can be seen as model mapping as well.

4Graal is a simple imperative programing language which is used in [25] for teaching the theory of
programing languages and which will be used in the first example in Chapter 5.

25

3 Language Modeling And Processing

EBNF
< Ecore > μ

ε

▼

EBNF
Language

Graal
< EBNF >

▼

Ecore
Language

ε

▼

Ecore
< Ecore > μ ▼

▼ε

Graal
Languageμ ▼

Program X
< Graal >

ε

▼

Graal
< Ecore >

μ

▼

ε

▼

EBNF
< EBNF >

μ ε

▼
▼

Basic Language
ConceptsEBNF Language

Constructs

δ

Graal Language
Constructs

δδδ

▼
▼▼

▼

ε
▼

ReuseGraal
< Ecore >

ReuseGraal
Language

ISC based
Language
Constructs

Components
< ReuseGraal >

ε

▼

μ▼

μ

▼

δ

▼

▼

ε

Runtime
States of X

μ

▼

δ

δ

▼

▼

A runtime
Object of X

ε

▼

Figure 3.7: A megamodel of languages and their relations in Ecore language modeling.

26

4 Tool Implementation

The functionality of E-CoMoGen is twofold. The tool should be able to process the
composition of fragments written in any reuse language, which can be parsed into an
instance of a language core-model. Also, it should be able to produce such a core-model
and the corresponding parser, when given an EBNF grammar of the reuse language.
This chapter first describes the overall structure of the tool. It further includes one
section on each of the tool’s functionalities. Finally, it outlines the integration with the
Eclipse Platform.

4.1 Tool Structure

The E-CoMoGen tool is made up of a core that consists of a set of Java classes, assem-
bled in the ecomogen.jar file, and a collection of eclipse plugins (Figure 4.1). The core
provides the main functionality of composing fragments. It also defines the interfaces for
extending the tool. The code-generation plugin builds upon the EMF code-generation fa-
cilities to generate Java classes from language core-models and upon the ANTLR parser
generator [26] to generate parsers for programs written in those languages. An IDE
plugin integrates with the Eclipse Platform to execute compositions automatically and
to give feedback of parsing and composition errors. The visualization and user interface
parts are placed in separate plugins.

Languages, language mappings and composers are three possibilities of extending E-
CoMoGen. For each of them some standard extension is implemented. A language
plugin for the EBNF language provides classes generated from a language core-model of
the EBNF language. Another plugin implements a mapping from EBNF to Ecore and
back. With these plugins an EBNF description of any language can be translated into a
core-model of that language from which a new language plugin can be generated by the
code generation plugin. Note that the EBNF language plugin can be re-generated form
an EBNF grammar of EBNF (Appendix A). Finally, the two fundamental composers of
invasive composition — bind and extend — are provided in a generic implementation,
working on any language core-model.

4.2 The E-CoMoGen Foundation

The central part of the tool includes the functionality for composing composition pro-
grams and components. The structure of its implementation will be explained in this
section.

27

4 Tool Implementation

E-CoMoGen Core Plugin

ecomogen.jar

 de.tudresden.ecomogen.composerde.tudresden.ecomogen.processing

executeComposition()
printBack()

Composition
Executor

FileProcessing
Exception

line : int
position : int

FileProcessing
Problem

parse(boxType)

<<interface>>
IParser

createParser
 (inputStream)

<<interface>>
IParserFactory

getComposer(id)

<<interface>>
IComposer
RegistrygetComponent

 (path, type)

<<interface>>
IComponent
FileLoader

throws

creates

execute()

<<interface>>
IComposer

Bind
Composer

Extend
Composer

manages

de.tudresden.ecomogen.mapping

mapToEcore()
mapFromEcore()

<<interface>>
ILanguageCore
ModelMapping

antlr.jar

basiclanguage
concepts.jar

Extension Points:

composer
mapping

parserfactory

de.tudresden.ecomogen.core

Resource
ComponentFileLoader

Plugin
ComposerRegistry

calls

org.eclipse.core.resources

org.eclipse.core.runtime

E-CoMoGen IDE Plugin

de.tudresden.ecomogen.ide.builder

visit()

ECoMoGenFileVisitorr

build()

ECoMoGenBuilder

de.tudresden.ecomogen.ide.nature

uses

activate()
deactivate()

ECoMoGenNature

E-CoMoGen Codegeneration Plugin

de.tudresden.ecomogen.
codegenration.antlr

de.tudresden.ecomogen.codegenration

generate(languageModel)

ModelCodeGenerator

generate(languageModel)

<<interface>>
IParserGenerator

AntlrParserGenerator

Language EBNF Plugin

Language Graal Plugin

Language GraalReuse Plugin

Language ... Plugin

EBNF Mapping Plugin

de.tudresden.ecomogen.language.
ebnf.mapping

mapToEcore()
mapFromEcore()

EbnfEcoreMappng

parserfactory

parserfactory

parserfactory

parserfactory

mapping

dependency

dependency

dependencybuildersnatures

dependency

generates

generates

generates

generates

org.eclipse.uiE-CoMoGen IDE
User Interface Plugin

E-CoMoGen Codegeneration
User Interface Plugin

dependencydependency

org.eclipse.emf.ecore

dependency

org.eclipse.emf.codegen.ecoredependency

Figure 4.1: The structure of the E-CoMoGen tool. All E-CoMoGen plugins have depen-
dencies to the Core Plugin which are not sketched.

28

4.2 The E-CoMoGen Foundation

4.2.1 The Central Packages In Ecomogen.jar

The heart of E-CoMoGen is assembled in the ecomogen.jar file. It can be used indepen-
dently of the Eclipse Platform but has the following dependencies:

• basiclanguageconcepts.jar. This jar file contains classes generated from the
basic-language-concepts-core-model. Classes generated from other language core-
models depend on these classes.

• emf.common.jar & emf.ecore.jar. These jars are provided by the Eclipse Mod-
eling Framework and are needed for working with core-models. They themselves
do not have any other dependencies and can be used independent of other parts
of EMF or Eclipse.

• antlr.jar. Parsers generated by ANTLR use common base classes. These classes
are contained in this jar file available from [26].

The ecomogen.jar file contains the following packages and classes:

• de.tudresden.inf.ecomogen.processing. The processing package contains ev-
erything needed to process syntax trees of reuse language programs and com-
ponents. It provides the interfaces IParserFactory and IParser, which language
plugins will implement when they are generated (see Section 4.3). A parser parses
fragment components to syntax trees which are then passed to the CompositionEx-
ecutor. It implements the syntax tree traversal (see Section 3.3). When syntax
tree rewriting is finished, it can print back the result, by extracting all terminal
symbols in the correct order from the composed syntax tree.

During tree traversal, component files need to be loaded. Their location is iden-
tified by the boxlocation string in a composer-call (see Section 3.2.1). Since the
structure of the underlying file system might differ (especially in non-Eclipse en-
vironments), the interpretation of the location string and the resulting file-loading
can be varied by exchanging the implementation of IComponentFileLoader.

Error reporting is supported by the classes FileProcessingException and FilePro-
cessingProblem. If errors are encountered during parsing or composition, a FilePro-
cessingException will be thrown with a set of FileProcessingProblems attached.
Each of these problems points at the position in the file where the problem oc-
curred, which can be given as feedback to the user.

• de.tudresden.inf.ecomogen.composer. During tree traversal, composers are
called. They are identified by a composer identifier (see Section 3.2.1). The corre-
sponding implementation can be retrieved by querying an IComposerRegistry. All
composers have to implement the execute() method of IComposer.

The standard composer implementations, BindComposer and ExtendComposer,
complete this package.

29

4 Tool Implementation

• de.tudresden.inf.ecomogen.mapping. To use EBNF as a metalanguage, a
mapping from EBNF grammars to core-models needs to be provided (see Section
3.1.1). It is also desirable to employ other metalanguages, if required. ILan-
guageCoreModelMapping is the interface which needs to be implemented to map
between language core-models and any other metalanguages1.

4.2.2 The E-CoMoGen Core Plugin

When used in an Eclipse environment, the ecomogen.jar and its dependencies are wrapped
by the E-CoMoGen core plugin, which provides additions for smooth integration into
the Eclipse Platform. The plugin defines extension points for the three possible tool ex-
tensions (languages, mappings and composers) to make extensions easy and conformant
with the usual way Eclipse plugins are extended. The PluginComposerRegistry delegates
composer registration to the Eclipse plugin mechanism. Additionally, a component file
loader (ResourceFileLoader) that builds upon the Eclipse resources plugin — the Eclipse
Platform’s resource management — is implemented2.

4.3 EMF Code And Parser Generation

The common way to generate code from a core-model is the application of a generator
model. A generator model wraps an arbitrary core-model and needs some additional
information for the code generation (e.g. a location for the generated code). For the
language plugin generation, the additional information is either pre-defined in the imple-
mentation or can be derived from the language core-model. Therefore generator model
usage is accomplished within the ModelCodeGenerator, completely invisible to the user.

EMF code generation is based on templates, which can be varied, making it very
flexible and configurable. However, almost no modification to the provided templates
is necessary. All Java class generation is left unchanged. Merely the templates for the
plugin.xml and MANIFEST.MF file (which together make up the plugin’s description)
need slight changes to define the correct plugin dependencies and to register the fileparser
extension to the E-CoMoGen core plugin.

The parser generation proves itself to be more tricky. The parser generator of choice
is ANTLR. It has a long history and a stable implementation. It has its own meta-
language to define grammars and behaviors of scanners and parsers . The notation for
the grammar rules is very similar to the EBNF notation. Is it straight forward to write
an ANTLR grammar based on a language core-model. The AntlrParserGenerator does

1For EBNF the mapping is implemented by the EBNF mapping plugin as described in Section 3.1.2.
2In a non-Eclipse environment, E-CoMoGen extensions could be configured in a property file. An

alternate composer registry could use information from the property file to retrieve composers and
a component file loader based on the java.io package could be employed.

30

4.4 Hooking Into Eclipse — The E-CoMoGen IDE

that and then feeds the grammar to the ANTLR tool, which generates Java classes out
of it.

Unfortunately, ANTLR can only process LL(k) grammars and therefore not every
arbitrary context free grammar. Since there are no such restrictions to language core-
models (or to a corresponding EBNF grammar), the parser generation is not successful
for every language core-model. Errors, resulting from improper grammars, reported by
the ANTLR tool, are passed back to the user via FileProcessingExceptions. Still, it is
desirable to support parser generation for more language core-models. Therefore, the
ANTLR dependencies are kept loose (by using interfaces like IParserGenerator), making
an exchange of the parser generator possible.

The process of language plugin generation based on an EBNF grammar is illustrated
in Figure 4.2.

L language plugin

EBNF
of L

EBNF
Parser core-model

of L

Ebnf
Ecore
Mapping

syntax
tree
of L

ANTLR
Parser

Generator

Model
Code

Generator

ANTLR
Tool LParser.java

ConstructA.java
ConstructB.java

...

plugin.xml

ANTLR
of L

Figure 4.2: From an EBNF grammar file to a language plugin.

4.4 Hooking Into Eclipse — The E-CoMoGen IDE

While the general management of resources is provided by the Eclipse Platform, exten-
sion points allow to specify special treatments of resources. All resources exist inside the
workspace. The workspace contains projects which again contain folders and files. Fold-
ers and files inside a project can be given special treatment as defined by the project’s
natures. The ECoMoGenNature defines one folder for composition programs, one for
fragment components and one where the composed result are printed-back to. The Re-
sourceComponentFileLoader, for instance, is configured with the fragment-component-
folder as the location where to look for component files. The composition-program and
print-back-folder are used by the ECoMoGenBuilder.

31

4 Tool Implementation

When a project is built3 which has the ECoMoGenNature configured, the ECoMoGen-
Builder sends an ECoMoGenFileVisitor to every file in the composition-program-folder.
The visitor determines the language the file is written in by examining the file’s ex-
tension. It then creates (by using the corresponding parser factory) and calls a parser,
passes the syntax tree to the CompositionExecutor and prints back the result to a file
in the print-back-folder. Figure 4.3 illustrates the process.

Errors which occur in form of FileProcesingExceptions are caught and resource-markers
(a concept to add additional information to resources) containing the problem’s infor-
mation are attached to the erroneous input file. Resource-markers can easily be used to
visualize the occurred problems in a text editor or a file hierarchy.

program.
reuse

syntax
tree

program.
core

Reuse
Language
Parser

Composition
Executor

Comp1

Comp2

Comp3

Reuse
Language
Parser

C1

C2

C3

syntax
tree

Bind
Composer

Comp.
Executor
Print Back

Figure 4.3: Composing a reuse language composition program and fragment components
to a core language program.

The basic functionality of invasive composition is implemented and integrated into an
easy-to-use IDE. However, the IDE could provide much more functionality and support
for writing components and composition programs. The Eclipse Platform offers a large
number of extension points which can be extended to accomplish new features with
little effort. The implementation provided so far is a good starting point for further
development (see Section 6.4).

The next chapter will demonstrate the tool on examples.

3A project can be build either automatically (when configured) or by selecting the build command
from the Eclipse Platform’s menu. Building a project means that all builders which are configured
for that project are called. The JDT builder for instance compiles Java source files, located in source
folders of a Java project, to class files.

32

5 Language Examples

To show the advantages of extending languages with invasive software composition con-
structs, as implemented in the E-CoMoGen tool, this chapter examines the extension of
three languages. The first language — the programming language Graal introduced in
Section 3.4 — will help to understand the benefits of invasive composition in general and
in the domain it was initially applied — programming languages. The second chapter
will deal with the XML query and transformation language Xcerpt [27] and prove that
ISC can be applied to formal languages of other domains. Finally, EBNF will be consid-
ered as a core language and advantages of introducing ISC concepts to metalanguages
will be demonstrated. All grammars and examples presented in this chapter work with
the current E-CoMoGen implementation.

5.1 An Imperative Programming Language — Graal

The concrete syntax of the language Graal is defined by the following EBNF grammar:

1 program = "program ", "{", declaration list , instruction , "}";

2

3

4 declaration list = { declaration };

5

6 declaration = type , variable , ";";

7

8 type = "boolean " | "integer ";

9 instruction = assignment | compound | conditional | loop;

10 expression = constant | variable | binary ;

11 variable = identifier ;

12

13 assignment = variable , ":=", expression , ";";

14 compound = "begin ", { instruction }, "end ";

15 conditional = "if", expression , instruction , ["else", instruction];

16 loop = "loop", "while", expression , instruction ;

17

18 constant = integer constant | boolean constant ;

19 boolean constant = "true" | "false ";

20 integer constant = ?((’0’..’9’)+)?;

21

22 binary = "(", expression , operator , expression , ")";

23 operator = boolean op | relational op | arithmetic op;

24 boolean op = "&&" | "||";

25 relational op = "<" | "<=" | "==" | "!=" | ">=" | ">";

26 arithmetic op = "+" | "-" | "*" | "/";

27

28 identifier = ?((’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_’|’0’..’9’)*)?;

33

5 Language Examples

5.1.1 Introducing A Component Model

The first thing we would like to add to the language is a component model — the
possibility to define slots and hooks. We decide to allow slot declarations for types,
instructions, expressions and variables. Hooks can be declared for declarations and for
instructions. For obvious reasons, identical notations are used: For slots the scheme is
<< slot-id : slot-type >>. For hooks it is <+ hook-id : hook-type +>.

30 type slot = "<<", (? slotid ?, identifier), ":", "type", ">>";

31 instruction slot = "<<", (? slotid ?, identifier), ":", " instruction ", ">>";

32 expression slot = "<<", (? slotid ?, identifier), ":", " expression ", ">>";

33 variable slot = "<<", (? slotid ?, identifier), ":", "variable ", ">>";

34

35 declaration hook = "<+", (? hookid ?, identifier), ":", " declaration ", "+>";

36 instruction hook = "<+", (? hookid ?, identifier), ":", " instruction ", "+>";

To integrate the new constructs in the language, some parts of the core language
grammar have to be altered, in order to allow slot or hook declarations as alternatives
to the corresponding concrete constructs.

8 type = "boolean " | "integer " | type slot;

9 instruction = assignment | compound | conditional | loop | instruction slot;

10 expression = constant | variable | binary | expression slot;

11 variable = identifier | variable slot;

A type, for example, can now either be boolean, integer or generic (type slot). A
variable name can be left open by using a variable slot.

4 declaration list = { declaration | declaration hook };

A declaration list consists of an arbitrary number of declarations. It is now allowed
to add declaration hooks to such a list. Note that this modification to the language is
only possible because of the collection-like structure of a declaration list, which allows
for extension. The same applies to compounds with respect to instructions.

14 compound = "begin ", { instruction | instruction hook }, "end ";

5.1.2 Defining A Composition Language

There are severals ways the composition language of a reuse language may look like.
One important thing to consider is, how deep the constructs to execute a composition
(composer calls and fragment box declarations) should integrate with the constructs
used to write components. They can be kept almost independent but may as well be
deeper integrated. Both approaches have their advantages. This section will introduce
a composition language which constructs are more independent, while Section 5.1.4 will
enhance it for deeper integration with other constructs of the reuse language.

38 composition program = box declaration list , composition list , (program bind | program);

39

40 box declaration list = {box declaration };

41 box declaration = (? boxtype ?, box type), (?boxid ?, identifier), ":=",

42 (? boxlocation ?, path), ";";

43

34

5.1 An Imperative Programming Language — Graal

44 box type = "program " | "declaration " | "type" | "instruction " |

45 "expression " | "variable ";

46 path = ?((’/’(’a’..’z’|’A’..’Z’|’_’|’.’|’0’..’9’)+)+)?;

47

48 composition list = { slot bind | hook extend };

49 slot bind = (? composer ?, ?bind?), "bind", (?box?, identifier), ".",

50 (? slot?, identifier), "with" ,(? value?, identifier), ";";

51 hook extend = (? composer ?, ?extend ?), "extend ", (? box?, identifier), ".",

52 (? hook?, identifier), "with" ,(? value?, identifier), ";";

53

54 program bind = (? composer ?, ?bind?), "bind", "inline ", (? value?, identifier), ";";

A composition program has two main parts: A box declaration list, where the fragment
components are defined and a composition list, where composition commands are issued.
box-type box-id := box-location; is the format of a box declaration, where the possible types
are the ones supported by our component model and the location is a path pointing at
a fragment file. A composition list consists of slot bind (bind box.slot with value;) and hook
extend (extend box.hook with value;) composer calls, which can be used to compose a tree of
fragment components. The root of this tree should be a program component, which has
to be specified at the end of a composition program by bind inline program-component;.

To allow the writing of a composition program as an alternative to a normal program,
the first lines of the language grammar have to be adjusted.

1 reuse program = program | composition program ;

2 program = "program ", "{", declaration list , instruction , "}";

5.1.3 A First Composition Example

To demonstrate the new variability of the extended Graal language, we write a program
which compares three variables and neither define the values nor the type of the variables.

1 program {

2 <<myType :type >> a;

3 <<myType :type >> b;

4 <<myType :type >> c;

5

6 boolean result ;

7 <+ declarations: declaration +>

8

9 begin

10 a := <<valueA :expression >>;

11 b := <<valueB :expression >>;

12 c := <<valueC :expression >>;

13

14 result := ((a == b) == c);

15 <+ instructions:instruction +>

16 end

17 }

To fill the slots, two sets of components are defined and two different composition
programs, one using the integer and one using the boolean components, reuse the com-
parison program. Additionally, they extend the program to calculate the negative result.

35

5 Language Examples

/typeInteger.comp

1 integer

/expInt1.comp

1 (1 + 2)

/expInt2.comp

1 ((10 - 9) + (1 + 1))

/expInt3.comp

1 3

/negResDecl.comp

1 boolean negResult ;

1 program myProg := / compareThree.comp;

2 type theType := /typeInteger .comp;

3

4 expression exp1 := /intExp1 .comp;

5 expression exp2 := /intExp2 .comp;

6 expression exp3 := /intExp3 .comp;

7

8 declaration negResDecl := /negResDecl .comp;

9 instruction negRes := /negResult .comp;

10

11 bind myProg .myType with theType ;

12

13 bind myProg .valueA with exp1;

14 bind myProg .valueB with exp2;

15 bind myProg .valueC with exp3;

16

17 extend myProg .declarations with negResDecl ;

18 extend myProg .instructions with negRes ;

19

20 use myProg ;

⇓⇓

1 program {

2 integer a;

3 integer b;

4 integer c;

5

6 boolean result ;

7 boolean negResult ;

8

9 begin

10 a := (1 + 2);

11 b := ((10 - 9) + (1 + 1));

12 c := 3;

13

14 result := ((a == b) == c);

15 negResult := (result != true) ;

16 end

17 }

/typeBoolean.comp

1 boolean

/expBool1.comp

1 (true && (fale || true))

/expBool2.comp

1 true

/expBool3.comp

1 ((true || false) || (true && false))

/negResult.comp

1 negResult := (result != true) ;

1 program myProg := / compareThree.comp;

2 type theType := /typeBoolean .comp;

3

4 expression exp1 := /boolExp1 .comp;

5 expression exp2 := /boolExp2 .comp;

6 expression exp3 := /boolExp3 .comp;

7

8 declaration negResDecl := /negResDecl .comp;

9 instruction negRes := /negResult .comp;

10

11 bind myProg .myType with theType ;

12

13 bind myProg .valueA with exp1;

14 bind myProg .valueB with exp2;

15 bind myProg .valueC with exp3;

16

17 extend myProg .declarations with negResDecl ;

18 extend myProg .instructions with negRes ;

19

20 use myProg ;

⇓⇓

1 program {

2 boolean a;

3 boolean b;

4 boolean c;

5

6 boolean result ;

7 boolean negResult ;

8

9 begin

10 a := (true && (false || true));

11 b := true;

12 c := ((true|| false) || (true&& false));

13

14 result := ((a == b) == c);

15 negResult := (result != true) ;

16 end

17 }

36

5.1 An Imperative Programming Language — Graal

5.1.4 An Enhanced Composition Language

The composition language defined so far allows the retrieval and composition of ready
made components. A way to make the reuse of components more easy understandable
when writing a new program, is to allow the direct binding of fragments into the program
upon program writing using in-line template expansion (see Section 2.2.2).

We would like to enhance our composition language to support in-line template ex-
pansion for instructions, expressions and variables. Therefore, we define three new
constructs (the use keyword indicates an inline-template expansion operation):

56 instruction bind = (? composer ?, ?bind?), "use", (?value ?, identifier), ";";

57 expression bind = (? composer ?, ?bind?), "use", (?value ?, identifier);

58 variable bind = (? composer ?, ?bind?), "use", (?value ?, identifier);

Again, we have to extend rules from the original grammar. A composer call for in-
line template expansion may occur everywhere, where a corresponding slot is allowed to
occur (because a fragment will be bound to the position of the composer call).

9 instruction = assignment | compound | conditional |loop| instruction slot | instruction bind;

10 expression = constant | variable | binary | expression slot | expression bind;

11 variable = identifier | variable slot | variable bind;

The Graal grammar together with the introduced alterations and the newly defined
constructs constitute the Reuse-Graal language, which grammar can be found in Ap-
pendix B.

5.1.5 A Second Composition Example

The following example makes use of the enhanced composition language. A program is
written, which reuses pre-define components directly.

/a.comp

1 a

/b.comp

1 b

/square.comp

1 <<result :variable >> := (<<factor :expression >> * <<factor :expression >>);

/cubicle.comp

1 <<result :variable >> := ((<< factor :expression >> * <<factor :expresion >>)

2 * <<factor :expresion >>);

37

5 Language Examples

1 variable x1 := /a.comp;

2 variable x2 := /b.comp;

3

4 instruction calc := /square .comp;

5 expression exp2 := /intExp2 .comp;

6

7 bind calc.factor with x2;

8 bind calc.result with x1;

9

10 program {

11

12 integer use x1;

13 integer use x2;

14

15 integer c;

16

17 begin

18 use x2 := 4;

19

20 use calc;

21

22 c := (use x1 + use exp2);

23 end

24 }

⇒

⇒

1 program {

2

3 integer a;

4 integer b;

5

6 integer c;

7

8 begin

9 b := 4;

10 a := (b * b);

11

12 c := (a + ((10 - 9) + (1 + 1)));

13 end

14 }

One can assign the cubic component to the calc fragment box instead of the square
component to change the calculation.

The examples in this section showed how invasive software composition is applied in
a programing language. Although, the language dealt with is not for real-life use, the
concepts demonstrated in the examples can easily be ported to other languages. Generic
types (Example 5.1.3), for instance, increases the reuse factor of components of any core
language, which does not support it itself, remarkably. Support for in-line template
expansion (Example 5.1.5) to embed small components, like algorithms, directly into
code can speed up development, while adding flexibility in form of easy component
exchange. The next chapter proves that this ideas can indeed be applied to a real-life
language.

5.2 A Language From The Semantic Web Domain — Xcerpt

Xcerpt [27] is a XML query and transformation language, currently under development,
that is used, among others, in the semantic web domain. One of the main differences with
other XML query languages is that Xcerpt separates query-constructs, which defining
the querying, from construct-constructs, which construct the output, in rules.

The following Xcerpt rule consists of a query part (FROM ...) that extracts information
about books from a library and a construct part (CONSTRUCT ...) that assembles the results.

38

5.2 A Language From The Semantic Web Domain — Xcerpt

1 CONSTRUCT

2 result {

3 all result {

4 var Title ,

5 all var Author

6 }

7 }

8

9 FROM

10 in {

11 resource { "http :// bib -lib.com" } ,

12 bib {{

13 book {{

14 title [var Title] ,

15 authors {{

16 author [var Author]

17 }}

18 }}

19 }}

20 }

21

22 END

In the next section we will enhance the Xcerpt language with slot declarations and
a small composition language to demonstrate how invasive composition could work on
rules and help to make rules reusable.

5.2.1 Reuse-Xcerpt

A Reuse-Xcerpt query, which extracts information from a library, is given as a query
component (/BibQuery.comp). It defines some open slots for variables:

1 in {

2 resource { "http :// bib -lib.com "" } ,

3 bib {{

4 book {{

5 title [

6 <<title >>

7] ,

8 authors {{

9 author [

10 <<author >>

11]

12 }}

13 }}

14 }}

15 }

To allow the binding of queries and variables, we make minimal extension to the Xcerpt
language and are able to write the following composition program, which retrieves the
query component, binds the open variable slots and then binds the component itself by
in-line template expansion.

39

5 Language Examples

1 VARBOX title { / VarTitle .comp }

2

3 VARBOX author { /VarAuthor .comp }

4

5 QUERYBOX bibquery { /BibQuery .comp }

6

7 BIND bibquery .title { title }

8 BIND bibquery .author { author }

9

10 CONSTRUCT

11 result {

12 all result {

13 bind var title ,

14 all

15 bind var author

16 }

17 }

18

19 FROM

20 bind query bibquery

21

22 END

The full grammar of the extended Xcerpt can be found in Appendix C. The constructs
newly introduced in the reuse language are:

165 var slot = "<<", (? slotid ?, identifier), ">>";

166

167 var box = (? boxtype ?, ?variable ?), "VARBOX ", (? boxid?, identifier),

168 "{", (? boxlocation ?, path), "}";

169 query box = (? boxtype ?, ?query ?), "QUERYBOX ", (? boxid?, identifier),

170 "{", (? boxlocation ?, path), "}";

171

172 global bind = (? composer ?,? bind?), "BIND", (?box?, identifier), ".", (? slot?, identifier),

173 "{", (?value ?, identifier), "}";

174 var bind = (? composer ?, ?bind?), "bind"," var", (? value?, identifier);

175 query bind = (? composer ?, ?bind?), "bind"," query ", (? value?, identifier);

176

177 path = ?((’/’(’a’..’z’|’A’..’Z’|’_’|’.’|’0’..’9’)+)+)?;

Altered original language constructs are:

3 construct query rule = "CONSTRUCT ", ct term , "FROM", query , "END "

4 | "CONSTRUCT ", ct term , "END"

5 | "GOAL", goal head , "FROM", query , "END"

6 | "GOAL", goal head , "END"

7 | var box

8 | query box

9 | global bind;

29 variable = (" var", identifier) | var slot | var bind ;

99 query = real query | query bind;

100 real query = ...

Although the extension of the language was kept small here, it indicates how invasive
composition can be applied to a querying language. Extending the language further will
not be problematic.

40

5.3 Towards Language Composition — EBNF

5.3 Towards Language Composition — EBNF

Since we are now able to extend all languages describable with EBNF, we can also
extend EBNF itself. This makes it possible to structure large grammars in components
and reuse parts of grammars. The constructs to declare slots and hooks used in the
Reuse-Graal language for instance, are all very similar and may even be reused in other
language extensions. Therefore, we will extend EBNF to Reuse-EBNF and use it to
compose a modularized grammar of Reuse-Graal. EBNF is extended with a component
model and a composition language, comparable to the Graal extension, by introducing
new rules and altering some existing ones. The Reuse-EBNF grammar is based on the
EBNF grammar used in E-CoMoGen, which can be found in Appendix A.

1 reuse ebnf = {syntax };

2

3 syntax = rule list | meta identifier box | rule list box | definition box |

4 bind | extend | syntax rule hook | syntax rule extend ;

5 rule list = syntax rule or comment , {syntax rule or comment };

6 syntax rule or comment = syntax rule | comment ;

7

8 comment = ?("(*" (~(’*’ | ’)’ | ’(’))* "*)")?;

9 syntax rule = (meta identifier | meta identifier slot | meta identifier bind),

10 "=", definitions list , ";";

11 meta identifier = ident;

12 ident = ?((’A’..’Z’ | ’a’..’z’)(’A’..’Z’ | ’a’..’z’ | ’0’..’9’ | ’ ’)*)?;

13

14 definitions list = single definition , {("|" , single definition) | syntactic primary |

15 definition hook | definition extend };

16

17 single definition = syntactic primary , {",", syntactic primary };

18

19 syntactic primary = optional sequence | repeated sequence | grouped sequence |

20 meta identifier | quote first | quote second | special sequence |

21 definition slot | definition bind;

22

23 optional sequence = "[", definitions list , "]";

24 repeated sequence = "{", definitions list , "}";

25 grouped sequence = "(", definitions list , ")";

26 special sequence = ?("?" (~(’? ’))* "?")?;

27

28 quote first = ?(’\"’ (~(’\" ’))* ’\"’)?;

29 quote second = ?(’\’’ (~(’\’’))* ’\’’)?;

30

31 syntax rule hook = "<+", (? hookid ?, ident), "+>";

32 definition hook = "|", "<+", (? hookid ?, ident), "+>";

33 definition slot = "<<", (? slotid ?, ident), ">>";

34 meta identifier slot = "<<", (? slotid ?, ident), ">>";

35

36 rule list box = (? boxtype ?, ?syntax ?), "("," rules" ,")", (? boxid?, ident),

37 "=", (? boxlocation ?, path), ";";

38 definition box = (? boxtype ?, ? syntactic primary ?),"(", "def ",")", (? boxid?, ident),

39 "=", (? boxlocation ?, path), ";";

40 meta identifier box = (? boxtype ?, ?meta identifier ?), "(", "id", ")", (? boxid?, ident),

41 "=", (? boxlocation ?, path), ";";

42

43 path = ?((’/’(’a’..’z’|’A’..’Z’|’_’|’.’|’0’..’9’)+)+)?;

44

45 definition bind = (? composer ?, ?bind?),"->", (? value?,ident);

46 meta identifier bind = (? composer ?, ?bind?),"->", (? value?,ident);

41

5 Language Examples

47 definition extend = "|" ,(? composer ?, ?extend ?),"->", (? value?,ident);

48 syntax rule extend = (? composer ?, ?extend ?),"->", (?value ?,ident), ";";

49

50 bind = (? composer ?, ?bind?), "("," bind",")", (?box?, ident),

51 ".", (? slot?, ident), "=" ,(? value?, ident), ";";

52 extend = (? composer ?, ?extend ?), "("," extend ",")", (?box?, ident),

53 ".", (? hook?, ident), "=" ,(? value?, ident), ";";

5.3.1 Reuse-Graal Composed

We prepare the Graal grammar from Section 5.1 to make it extensible by introducing
hooks to some choice constructs, which allows to add more options.

4 declaration list = { declaration | <+declarationchoice+> };

8 type = "boolean " | "integer " | <+typechoice +>;

9 instruction = assignment | compound | conditional | loop | <+ instructionchoice+>;

10 expression = constant | variable | binary | <+expressionchoice+>;

11 variable = identifier | <+variablechoice+>;

14 compound = "begin ", { instruction | <+compoundchoice+> }, "end ";

Then we define two components as reusable skeletons for the slot and hook declara-
tions, and one which contains the composition language introduced in Section 5.1.2 and
Section 5.1.4.

/slotdeclaration.ecomp

1 <<metaidentifier >> = "<<", (? slotid ?, identifier), ":", <<type >>,">>";

/hookdeclaration.ecomp

1 <<metaidentifier >> = "<+", (? slotid ?, identifier), ":", <<type >>,"+>";

/compositionlang.ecomp

1 composition program = box declaration list , composition list , (program bind | program);

2

3 box declaration list = {box declaration };

4 box declaration = (? boxtype ?, box type), (?boxid ?, identifier), ":=",

5 (? boxlocation ?, path), ";";

6

7 box type = "program " | "declaration " | "type" | "instruction " |

8 "expression " | "variable ";

9 path = ?((’/’(’a’..’z’|’A’..’Z’|’_’|’.’|’0’..’9’)+)+)?;

10

11 composition list = { slot bind | hook extend };

12 slot bind = (? composer ?, ?bind?), "bind", (?box?, identifier), ".",

13 (? slot?, identifier), "with" ,(? value?, identifier), ";";

14 hook extend = (? composer ?, ?extend ?), "extend ", (? box?, identifier), ".",

15 (? hook?, identifier), "with" ,(? value?, identifier), ";";

16

17 program bind = (? composer ?, ?bind?), "use", (?value ?, identifier), ";";

18 instruction bind = (? composer ?, ?bind?), "use", (?value ?, identifier), ";";

19 expression bind = (? composer ?, ?bind?), "use", (?value ?, identifier);

20 variable bind = (? composer ?, ?bind?), "use", (?value ?, identifier);

42

5.3 Towards Language Composition — EBNF

We can now assemble the Reuse-Graal grammar by writing a composition program
that extends the original Graal grammar and merges it with the composition language
grammar component. The contents of the additional small components, used in the
composition program, correspond to the components’ names.

1 reuse program = program | composition program ;

2

3 (rules) graalcore = /graal.ebnf;

4

5 (id) type slot = / typeslot .ecomp;

6 (id) instruction slot = / instructionslot.ecomp ;

7 (id) expression slot = / expressionslot.ecomp;

8 (id) variable slot = / variableslot.ecomp ;

9 (id) declaration hook = / declarationhook.ecomp ;

10 (id) instruction hook = / instructionhook.ecomp ;

11

12 (extend) graalcore . typechoice = type slot;

13 (extend) graalcore . instructionchoice = instruction slot;

14 (extend) graalcore . expressionchoice = expression slot;

15 (extend) graalcore . variablechoice = variable slot;

16 (extend) graalcore . declarationchoice = declaration hook;

17 (extend) graalcore . compoundchoice = instruction hook;

18 -> graalcore ;

19

20

21 (rules) slot1 = /slotdeclaration.ecomp;

22 (def) type = /type.ecomp;

23 (bind) slot1.type = type;

24 (bind) slot1.metaidentifier = type slot;

25 -> slot1;

26

27 (rules) slot2 = /slotdeclaration.ecomp;

28 (def) instruction = /instruction .ecomp ;

29 (bind) slot2.type = instruction ;

30 (bind) slot2.metaidentifier = instruction slot;

31 -> slot2;

32

33 (rules) slot3 = /slotdeclaration.ecomp;

34 (def) expression = /expression .ecomp;

35 (bind) slot3.type = expression ;

36 (bind) slot3.metaidentifier = expression slot;

37 -> slot3;

38

39 (rules) slot4 = /slotdeclaration.ecomp;

40 (def) variable = /variable .ecomp ;

41 (bind) slot4.type = variable ;

42 (bind) slot4.metaidentifier = variable slot;

43 -> slot4;

44

45 (rules) hook1 = /hookdeclaration.ecomp;

46 (def) declaration = /declaration .ecomp ;

47 (bind) hook1.type = declaration ;

48 (bind) hook1.metaidentifier = declaration hook;

49 -> hook1;

50

51 (rules) hook2 = /hookdeclaration.ecomp;

52 (bind) hook2.type = instruction ;

53 (bind) hook2.metaidentifier = instruction hook;

54 -> hook2;

55

56 (rules) compoisitionlang = /compositionlang.ecomp;

57 -> compoisitionlang;

43

6 Outlook

Many ideas for the modeling of languages originate from the ones presented in [6].
However, some language modeling approaches and their possible consequences for this
work have not been taken into account. This chapter will take a short look at the
relations of these approaches to this work and point out where future work could be
directed to integrate them.

It was suggested earlier, to extend the implementation of E-CoMoGen with additional
features. Some proposals about how this extensions might look like and how they can
be supported by the Eclipse Platform are presented in Section 6.4.

6.1 Semantics Of Languages

In [6] static semantics of languages are described by introducing new binary relations
between constructs. A similar approach could be used in language core-models: Ad-
ditional references between construct-classes could be introduced to denote semantic
relationships (e.g. every variable use has a reference to a variable declaration where the
variable names are equal). After parsing a program to a syntax tree, this references can
be filled by rewriting the tree to a graph. For this, one could apply a Java based rule
engine (e.g. Jess [28]) and use EMF’s validation framework to check if a program is
semantically correct.

Even if invasive software composition works without knowing about the specifics of the
language’s semantics, the benefits of such support should be discussed. Describing all the
semantics of a core language is a tedious task and much more complex than describing
its syntax. One could avoid this by using existing tools, like interpreters and compilers,
to find syntactic errors in core language programs. The additional semantics in reuse
languages can be (and are already) checked during composition. These semantics, which
are based on the ISC concepts, are either generic for all reuse languages, or can be
checked in the implementation of a composer operation. An example of such a semantic
constraint is that certain slots have to be bound during a composition (E-CoMoGen
checks this kind of semantics and reports an error if such a constraint is violated).

A more interesting issue for further research is the semantics of fragment components.
A fragment component on its own is may not be semantically correct with respect to the
core language. However, a composition of fragment components results in a program
of the core language, which has to conform to the semantics of the core language. If it

45

6 Outlook

does not, it is sometimes not clear if the mistake was made during composition, already
during component definition or if it is the result of syntax issues1.

If semantics, of which kind whatsoever, should be defined they have to be described
somehow. It should be possible to extend EBNF further to integrate descriptions of
language semantics directly into EBNF grammars. These kind of grammars are likely
to get complex. Invasive composition of language grammars (Example 5.3) might help
here to structure grammars into components. Developing a graphical editor which allows
conformable definition of complex language core-models might also be another option.
A mapping from EBNF would then become unnecessary and the strong similarities
between language-core models and the EBNF language can be reconsidered.

6.2 Automatic Component Model Generation

Universal genericity and universal extensibility were introduced and defined in Section
2.2.1 as concepts, which, when present in a language, make the language well suited
for component definition. ISC can easily be used to simulate these two concepts by
automatic component model generation [6, 29]. The principle is, to derive slot and hook
declaration constructs automatically for all existing constructs in a core language.

The following algorithm can be applied to a language core-model to add a correspond-
ing slot declaration construct for every construct in the language and simulate universal
genericity :

• For each language construct-class named <X> (which is not a sub-construct)

1. create a construct-class <X>_Slot.

2. make <X>_Slot a subclass of LCSlotDeclaration.

3. create a construct-class <X>_SlotChoice

4. make <X>_SlotChoice a subclass of LCChoice.

5. make <X> and <X>_Slot subclasses of <X>_SlotChoice.

6. replace all references to <X> by references to <X>_SlotChoice.

To simulate universal extensibility, hook declaration constructs have to be added to
a language everywhere, where collection-like constructs (which correspond to EBNF’s
repeated sequences) occur. An algorithm of the following kind is sufficient:

1A problem which occurs in invasive source code composition is naming. If, for instance, each of
two components declare and use a local variable with the same name, the compiler for the core
language will assume that both components refer to the same variable after the components are
invasively composed, which is not the desired result. In such a case, one variable should be renamed
automatically by the composition tool.

46

6.3 The Relationship Between Reuse And Core Language

• For each reference in a construct-class (which subclasses LCAggregat) of multiplic-
ity any to a construct-class <X>

1. create a construct-class <X>_Hook, if it does not exit already.

2. make <X>_Hook a subclass of LCHookDeclaration.

3. create a construct-class <X>_HookChoice, if it does not exist already.

4. make <X>_HookChoice a subclass of LCChoice.

5. make <X> and <X>_Hook subclasses of <X>_HookChoice.

6. replace the references to <X> by a references to <X>_HookChoice.

These algorithms are easy to implement and were prototypical tested with E-CoMoGen
on the Graal language. However, the concrete syntax of slot and hook constructs needs
to be defined somehow. It can not be easily generated automatically — at least not
without language dependent configuration of the component model generator. Addi-
tionally, the extended language still needs some composition language to make use of
the component model, which has to be defined manually. A tool suite for component
model generation which is configurable and also supports the introduction of composition
language constructs to a reuse language is thinkable.

Another way to accomplish a supported component model extension of a language
could be language grammar composition as indicated in Example 5.3.

6.3 The Relationship Between Reuse And Core Language

A reuse languages handled in E-CoMoGen is always a superset of the corresponding core
language (see Figure 3.7). This is one of the fundamental ideas of the composition by
tree rewriting. If the core language was not a subset of the reuse language, rewriting a
reuse language tree could never result in a tree containing core language constructs not
belonging to the reuse language.

It might be desirable to have a multi-stage programming [30] emphasized approach of
multi-stage invasive composition, where the composition of reuse language components
results in components of another reuse language and so forth until components of one
reuse language are eventually composed to core language programs. That allows the
definition of components of different granularity. The first reuse language could be an
Architecture Description Language, while the last may allow fine grained adjustments
to small components. In such a multi-stage composition, the principle of letting every
reuse language employed be a superset of the next reuse language employed is hard to
maintain.

47

6 Outlook

6.4 Further Development Of E-CoMoGen

The current implementation of E-CoMoGen is working fine on executing the composition,
but could use enhancement on the user interface. Some ideas which came up during the
development, but are not yet implemented, are sketched in this section.

• Projects and folders: A project, configured with the E-CoMoGen nature, is a
container for fragments and composition programs. As described in Section 4.4,
folders for different purposes exist in such a project. It would be desirable to have
a wizard to create an E-CoMoGen project (like it exists for Java projects) and an
appropriate property page to define folders for the different purposes.

• Text editor: A text editor with syntax highlighting is a must-have for an IDE.
Syntax highlighting rules can be derived from a language core model. A configura-
tion, allowing the user to define colors and text appearances, should be provided.
An outline view, which is a structured graphical representation of source code,
could also be provided for composition programs and fragments.

• Error feedback: Composition errors are already marked when using the Eclipse
standard text editor. However, this process can be improved. Especially errors
occurring inside a fragment which is loaded into a fragment box are hard to visu-
alize. Some kind of composition preview could be implemented to give a view on
the partial, but erroneous, composition result.

• Semantic check: As indicated before, semantic errors of core-language programs
can be checked by existing tools (Section 6.1). How exactly such tools may be
integrated in E-CoMoGen should be explored. Defining reuse languages based
on Java and integrating E-CoMogen with the Eclipse JDT may be an interesting
case-study for that purpose.

• Language enhancement tool suite: Tools to support the definition of reuse
languages can also improve the usability of E-CoMoGen. It was already mentioned
that automatic component model generation could be integrated by providing such
tools (Section 6.2).

Ideas for other useful features for E-CoMoGen may surface by looking at other Eclipse
IDEs or by examining the offered extension points of various plugins which belong to
the Eclipse Platform.

A question that has to be answered when designing a new feature is, whether the
feature can be implemented to work for every (generated) language plugin or if additional
code generation should be provided. The question might be, for example, if there should
be a text editor for E-CoMoGen in general or one generated for every reuse language.

48

7 Conclusion

Relationships between different systems were discussed and illustrated (mostly using
megamodels) throughout this thesis. To draw a first conclusion and to give a final
overview about how the different systems relate to each other, a megamodel is presented
in Figure 7.1, which concentrates on all important systems introduced and their relations.
It unites the megamodels presented in earlier chapters.

Eclipse
Platform

E-CoMoGen Tool

EMF

EBNF
< Ecore > μ

ε

▼

EBNF
Language

L
< EBNF >

▼

Ecore
Language

ε

▼

Ecore
< Ecore > μ ▼

▼ε

L
Languageμ ▼

Program X
< L >

ε

▼

L
< Ecore >

μ

▼

EBNF
< EBNF >

μ ε

▼
▼

BLC-Model
< Ecore >

δ
δ

▼

▼

Runtime
States of X

μ

A runtime
Object of X

ε

▼

▼

ε

▼

L
Language
Plugin

BasicLanguage
Concepts.jar

ecomogen.jar

EBNF
Mapping
Plugin

Reuse-L
< Ecore >

Reuse-L
Language

Components
< Reuse-L >

ε

▼

▼

μ

composition

m
ap
pin
g

Reuse-L
Language
Plugin

ε

▼

Composition
Executor

δ
▼

executes

μ

▼

ANTLR
Tool

Ecore
Java Classe

μ
▼

μ

▼

μ

▼
μ

▼
μ

▼
implements

δ▼

δ

▼

δ

▼

δ ▼δ

▼

δδδ
δ

δ

▼
▼

▼

▼ ▼

Thesis:
Development Of Invasive

Composition Systems For Different
Languages Based On Ecore

μ

▼

EBNF
Language
Plugin

Figure 7.1: The megamodel of all systems this thesis is about. The language L can be
substituted by any core language, while Reuse-L can be substituted by any
reuse language which is an extension of L.

49

7 Conclusion

This thesis showed how ideas about language modeling have been successfully em-
ployed in the E-CoMoGen tool. Languages can be modeled in MOF or Ecore consis-
tently by introducing a common upper layer to all language models. Ideas from two-layer
language modeling and concepts from EBNF were successfully reused.

Invasive software composition constructs were introduced into several existing lan-
guages and can now be introduced into others as well using E-CoMoGen. The imple-
mentation of a composition tool which can work on any formal language underscores the
universality of the ISC technique. It allows ISC (and the tool implementing it) to exist
outside the scope of a concrete language, which is a great advantage especially in new
domains, like the semantic web, where languages are under development and in contin-
uous change, and where it is unforeseeable which languages will make it to wide-spread
applications.

For implementation oriented modeling, the Eclipse Modeling Framework and its meta-
model Ecore proved to be the right choice. The code generated based on models is well
structured and easy and flexible to use in applications, without requiring complicated
adjustments or configurations to the code generation facilities.

The Eclipse Platform keeps its promises and offers an ideal foundation for an integrated
development environment for composition programs and fragment components, as well
as for the writing of reuse language grammars to integrate support for new languages
in form of language plugin generation. The tool is kept extensible using the Eclipse
Platform’s plugin mechanism making extensions (e.g. in form of new composers) easy.
However, it was possible to keep the tool’s core Eclipse independent, allowing it to be
used easily in other environments (e.g. as a command-line tool for scripting).

The E-CoMoGen tool is a successful result of this work. Development of the tool
should be continued to make its use more user friendly. A tool, which people without
deeper knowledge about language modeling can use to introduce invasive composition
concepts to any language they like, should be a desired goal. This can be efficiently
accomplished by extending existing features of the Eclipse Platform.

Concerning language modeling, future work can benefit from the principle of two-
layered language models, but should reconsider the structure of the upper layer. It
should investigate deeper into the modeling of language semantics with Ecore and the
distinction between concrete and abstract syntax.

50

A EBNF Grammar Of EBNF

1 syntax = { syntax rule or comment };

2

3 syntax rule or comment = syntax rule | comment ;

4 comment = ?("(*" (~(’*’ | ’)’ | ’(’))* "*)")?;

5 syntax rule = meta identifier , "=", definitions list , ";";

6

7 meta identifier = ?((’A’..’Z’ | ’a’..’z’)(’A’..’Z’ | ’a’..’z’ | ’0’..’9’ | ’ ’)*)?;

8

9 definitions list = single definition , {"|", single definition };

10

11 single definition = syntactic primary , {",", syntactic primary };

12

13 syntactic primary = optional sequence | repeated sequence | grouped sequence |

14 meta identifier | quote first | quote second | special sequence ;

15

16 optional sequence = "[", definitions list , "]";

17 repeated sequence = "{", definitions list , "}";

18 grouped sequence = "(", definitions list , ")";

19 special sequence = ?("?" (~(’? ’))* "?")?;

20

21 quote first = ?(’\"’ (~(’\" ’))* ’\"’)?;

22 quote second = ?(’\’’ (~(’\’’))* ’\’’)?;

51

B EBNF Grammar Of Reuse-Graal

1 reuse program = program | composition program ;

2 program = "program ", "{", declaration list , instruction , "}";

3

4 declaration list = { declaration | declaration hook };

5

6 declaration = type , variable , ";";

7

8 type = "boolean " | "integer " | type slot;

9 instruction = assignment | compound | conditional |loop| instruction slot | instruction bind;

10 expression = constant | variable | binary | expression slot | expression bind;

11 variable = identifier | variable slot | variable bind;

12

13 assignment = variable , ":=", expression , ";";

14 compound = "begin ", { instruction | instruction hook }, "end ";

15 conditional = "if", expression , instruction , ["else", instruction];

16 loop = "loop", "while", expression , instruction ;

17

18 constant = integer constant | boolean constant ;

19 boolean constant = "true" | "false ";

20 integer constant = ?((’0’..’9’)+)?;

21

22 binary = "(", expression , operator , expression , ")";

23 operator = boolean op | relational op | arithmetic op;

24 boolean op = "&&" | "||";

25 relational op = "<" | "<=" | "==" | "!=" | ">=" | ">";

26 arithmetic op = "+" | "-" | "*" | "/";

27

28 identifier = ?((’a’..’z’|’A’..’Z’|’_’) (’a’..’z’|’A’..’Z’|’_’|’0’..’9’)*)?;

29

30 type slot = "<<", (? slotid ?, identifier), ":", "type", ">>";

31 instruction slot = "<<", (? slotid ?, identifier), ":", " instruction ", ">>";

32 expression slot = "<<", (? slotid ?, identifier), ":", " expression ", ">>";

33 variable slot = "<<", (? slotid ?, identifier), ":", "variable ", ">>";

34

35 declaration hook = "<+", (? hookid ?, identifier), ":", " declaration ", "+>";

36 instruction hook = "<+", (? hookid ?, identifier), ":", " instruction ", "+>";

37

38 composition program = box declaration list , composition list , (program bind | program);

39

40 box declaration list = {box declaration };

41 box declaration = (? boxtype ?, box type), (?boxid ?, identifier), ":=",

42 (? boxlocation ?, path), ";";

43 box type = "program " | "declaration " | "type" | "instruction " |

44 "expression " | "variable ";

45 path = ?((’/’(’a’..’z’|’A’..’Z’|’_’|’.’|’0’..’9’)+)+)?;

46 composition list = { slot bind | hook extend };

47 slot bind = (? composer ?, ?bind?), "bind", (?box?, identifier), ".",

48 (? slot?, identifier), "with" ,(? value?, identifier), ";";

49 hook extend = (? composer ?, ?extend ?), "extend ", (? box?, identifier), ".",

50 (? hook?, identifier), "with" ,(? value?, identifier), ";";

51 program bind = (? composer ?, ?bind?), "use", (?value ?, identifier), ";";

52 instruction bind = (? composer ?, ?bind?), "use", (?value ?, identifier), ";";

53 expression bind = (? composer ?, ?bind?), "use", (?value ?, identifier);

54 variable bind = (? composer ?, ?bind?), "use", (?value ?, identifier);

53

C EBNF Grammar Of Reuse-Xcerpt

The concrete syntax of the slightly extended Xcerpt (Reuse-Xcerpt) is derived from the
grammar included in [31].

1 program = construct query rule , { construct query rule } ;

2

3 construct query rule = "CONSTRUCT ", ct term , "FROM", query , "END "

4 | "CONSTRUCT ", ct term , "END"

5 | "GOAL", goal head , "FROM", query , "END"

6 | "GOAL", goal head , "END"

7 | var box

8 | query box

9 | global bind;

10

11 goal head = ct term

12 | "out", "{", out resource , ",", ct term , "}"

13 | "out", "[", out resource , ",", ct term , "]" ;

14

15 number terminal = ?((’0’..’9’)+)?;

16 identifier = ?((’A’..’Z’ | ’a’..’z’) (’A’..’Z’ | ’a’..’z’ | ’0’..’9’ | ’_’ | ’-’)*)?;

17 string quote = ?(’\"’ (~(’\" ’))* ’\"’)? ;

18 comp = ?("<" | ">" | "<=" | ">=" | "!=" | "=")? ;

19

20 float number = number terminal ,["." , number terminal] ;

21

22 out resource = " resource ", "{", resource , "}"

23 | "resource ", "[", resource , "]" ;

24 in resource = out resource

25 | ("or" | "and "), "{", out resource , {",", out resource }, "}"

26 | ("or" | "and "), "[", out resource , {",", out resource }, "]" ;

27 resource = [(string quote | variable), ","], string quote ;

28

29 variable = ("var", identifier) | var slot | var bind ;

30

31 label list = identifier , {",", identifier } ;

32

33 ct term = identifier , [ordered ct list | unordered ct list]

34 | identifier , "@", ct term

35 | "optional ", ct term , [" with", "default ", ct term]

36 | "(", ct term , ")" ;

37

38 ct subterm = identifier , [ordered ct list | unordered ct list]

39 | string quote

40 | variable

41 | "^", identifier

42 | identifier , "@", ct subterm

43 | "optional ", ct subterm , ["with", "default ", ct subterm]

44 | "(", ct subterm , ")" ;

45

46 ct subterm coll = "all", (ct subterm

47 | "[", ct subterm list , "]"

48 | "{", ct subterm list , "}"),

49 [ordering | grouping]

50 | "some", amount , (ct subterm

51 | "[", ct subterm list , "]"

55

C EBNF Grammar Of Reuse-Xcerpt

52 | "{", ct subterm list , "}"),

53 [ordering | grouping]

54 | "(", ct subterm coll , ")" ;

55

56 ordering = "order", "by", [identifier], "[", label list , "]" ,

57 [" ascending " | " descending "] ;

58

59 grouping = "group", "by", "[", label list , "]" ;

60

61 amount = number terminal

62 | "-", number terminal

63 | number terminal , "-", number terminal ;

64

65 ordered ct list = "[", [ct subterm list], "]" ;

66 unordered ct list = "{", [ct subterm list], "}" ;

67 ct subterm list = [ct attributes], (ct subterm | ct subterm coll),

68 { ",", (ct subterm | ct subterm coll) } ;

69

70 ct attributes = "attributes ", "{", ct attribute , { ",", ct attribute }, "}"

71 | "(", ct attributes , ")" ;

72 ct attribute = identifier , ("[", (string quote | variable), "]"

73 | "{", (string quote | variable), "}")

74 | variable

75 | "^", identifier

76 | identifier , "@", ct attribute

77 | "all", (ct attribute | "[", ct attribute ,

78 { ",", ct attribute }, "]"), [ordering | grouping]

79 | "some", amount , (ct attribute | "[", ct attribute ,

80 { ",", ct attribute }, "]"), [ordering | grouping]

81 | "(", ct attribute , ")" ;

82

83 function = identifier ;

84

85 fun param = ct subterm

86 | ct subterm coll

87 | ct attributes ;

88

89 condition = variable , (identifier | comp), cond param

90 | cond param , (identifier | comp), variable

91 | (identifier | comp), "(", variable , ",", cond param , ")"

92 | (identifier | comp), "(", cond param , ",", variable , ")"

93 | ("and" | "or" | "not"), "[", condition , { ",", condition }, "]"

94 | ("and" | "or" | "not"), "{", condition , { ",", condition }, "}";

95

96 cond param = qr subterm

97 | function ;

98

99 query = real query | query bind;

100 real query = (qr term

101 | ("and" | "or"), "{", query , { ",", query }, "}"

102 | ("and" | "or"), "[", query , { ",", query }, "]"

103 | "not", query

104 | "in", "{", in resource , ",", query , "}"

105 | "in", "[", in resource , ",", query , "]"

106 | "Fail"

107 | "(", query , ")"

108), [" where", "{", condition , "}"] ;

109

110 qr term = identifier , [ordered qr list | unordered qr list]

111 | variable , ["->", qr term]

112 | identifier , "@", qr term

113 | "optional ", qr term

114 | "desc", qr subterm

56

115 | "(", qr term , ")" ;

116

117 qr subterm = identifier , [ordered qr list | unordered qr list]

118 | number terminal

119 | float number

120 | variable , ["->", qr subterm]

121 | "^", identifier

122 | identifier , "@", qr subterm

123 | ("desc" | "optional " | "without " | "position ",

124 (number terminal | variable)), qr subterm

125 | "(", qr subterm , ")" ;

126

127 ordered qr list = "[", [qr subterm list], "]"

128 | "[[", [qr subterm list], "]]" ;

129 unordered qr list = "{", [qr subterm list], "}"

130 | "{{", [qr subterm list], "}}" ;

131

132 qr subterm list = [qr attributes], qr subterm , { ",", qr subterm } ;

133

134 qr attributes = "attributes ", "{", qr attribute , { ",", qr attribute }, "}"

135 | "attributes ", "{","{", qr attribute , { ",", qr attribute }, "}" ,"}"

136 | ("desc" | "optional " | "without "), qr attributes

137 | "(", qr attributes , ")" ;

138 qr attribute = identifier , ("[", (identifier | variable), "]" |

139 "{", (identifier | variable), "}")

140 | identifier , "{{", "}}"

141 | variable , ["->", qr subterm]

142 | "^", identifier

143 | identifier , "@", qr subterm

144 | ("desc" | "without " | "optional "), qr attribute

145 | "(", qr attribute , ")" ;

146

147 dt label = identifier ;

148

149 dt term = [identifier , "@"], dt label ,

150 (ordered dt list | unordered dt list);

151

152 dt subterm = dt term

153 | number terminal

154 | float number

155 | "^", identifier

156 | identifier , "@", dt subterm ;

157

158 ordered dt list = "[", [dt subterm list], "]" ;

159 unordered dt list = "{", [dt subterm list], "}" ;

160 dt subterm list = [dt attributes], dt subterm , { ",", dt subterm } ;

161 dt attributes = "attributes ", "{", dt attribute , { ",", dt attribute }, "}" ;

162 dt attribute = dt label , ("[", string quote , "]" | "{", string quote , "}");

163

164

165 var slot = "<<", (? slotid ?, identifier), ">>";

166

167 var box = (? boxtype ?, ?variable ?), "VARBOX ", (? boxid?, identifier),

168 "{", (? boxlocation ?, path), "}";

169 query box = (? boxtype ?, ?query ?), "QUERYBOX ", (? boxid?, identifier),

170 "{", (? boxlocation ?, path), "}";

171

172 global bind = (? composer ?,? bind?), "BIND", (?box?, identifier), ".", (? slot?, identifier),

173 "{", (?value ?, identifier), "}";

174 var bind = (? composer ?, ?bind?), "bind"," var", (? value?, identifier);

175 query bind = (? composer ?, ?bind?), "bind"," query ", (? value?, identifier);

176

177 path = ?((’/’(’a’..’z’|’A’..’Z’|’_’|’.’|’0’..’9’)+)+)?;

57

Bibliography

[1] Doug McIlroy. Mass-produced software components. In Proceedings of the 1st Inter-
national Conference on Software Engineering, Garmisch Pattenkirchen, Germany,
pages 88–98, 1968.

[2] Uwe Aßmann. Invasive Software Composition. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2003.

[3] The COMPOST Consortium. COMPOST webpage.
http://www.the-compost-system.org, May 2006.

[4] International Organization for Standardization. ISO/IEC 14977:1996: Information
technology — Syntactic metalanguage — Extended BNF. International Organization
for Standardization, Geneva, Switzerland, 1996.

[5] Object Management Group. Unified modeling language — UML.
http://www.uml.org/, May 2006.

[6] Torsten Bürger. Contributions to language composition using standard semantic
web techniques. Master’s thesis, Dresden University of Technology, October 2005.

[7] The Eclipse Foundation. Eclipse platform technical overview, April 2006.

[8] The Eclipse Foundation. Eclipse project. http://www.eclipse.org/, May 2006.

[9] The Eclipse Foundation. Eclipse modeling framework — EMF.
http://www.eclipse.org/emf/, May 2006.

[10] Object Management Group. Meta object facility — MOF.
http://www.omg.org/mof/, May 2006.

[11] TU Dresden Software Engineering Group. E-CoMogen webpage.
http://web.inf.tu-dresden.de/~jh30/work/rewerse/comogen, May 2006.

[12] Jean-Marie Favre. Foundations of model (driven) (reverse) engineering : Mod-
els – episode i: Stories of the fidus papyrus and of the solarus. In Jean
Bezivin and Reiko Heckel, editors, Language Engineering for Model-Driven Soft-
ware Development, number 04101 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany, 2005.
http://drops.dagstuhl.de/opus/volltexte/2005/13.

59

http://www.the-compost-system.org
http://www.uml.org/
http://www.eclipse.org/
http://www.eclipse.org/emf/
http://www.omg.org/mof/
http://web.inf.tu-dresden.de/~jh30/work/rewerse/comogen
http://drops.dagstuhl.de/opus/volltexte/2005/13

BIBLIOGRAPHY

[13] Jean-Marie Favre. Foundations of meta-pyramids: Languages vs. meta-
models – episode ii: Story of thotus the baboon. In Jean Bezivin and
Reiko Heckel, editors, Language Engineering for Model-Driven Software De-
velopment, number 04101 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany, 2005.
http://drops.dagstuhl.de/opus/volltexte/2005/21.

[14] Jean-Marie Favre. Megamodelling and etymology. In Jean Bezivin
and Reiko Heckel, editors, Transformation Techniques in Software Engi-
neering, number 05161 in Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany, 2006.
http://drops.dagstuhl.de/opus/volltexte/2005/427 .

[15] Colin Atkinson and Thomas Kühne. Model-driven development: A metamodeling
foundation. IEEE Softw., 20(5):36–41, 2003.

[16] Jean Bézivin, Vladan Devedzic, Dragan Djuric, Jean-Marie Favreau, Dragan Gase-
vic, and Frédéric Jouault. An m3-neutral infrastructure for bridging model engineer-
ing and ontology engineering. In Proceedings of the First International Conference
on Interoperability of Enterprise Software and Applications (INTEROP-ESA’2005),
pages 159–171. Springer-Verlag, 2005.

[17] The REWERSE project. Report on the design of component model and composition
technology for the Datalog and Prolog variants of the REWERSE languages, August
2004.

[18] The REWERSE project. Composition of Rule Sets and Ontologies, May 2006.

[19] O. Lehrmann Madsen, B. Möller-Pedersen, and Kristen Nygaard. Object-Oriented
Programming in the BETA Programming Language. Addison Wesley, Reading, MA,
1993.

[20] The Eclipse Foundation. Eclipse java development tools — JDT.
http://www.eclipse.org/jdt, May 2006.

[21] The Eclipse Foundation. Eclipse plugin development environment — PDE.
http://www.eclipse.org/pde, May 2006.

[22] Frank Budinsky, Stephen A. Brodsky, and Ed Merks. Eclipse Modeling Framework.
Pearson Education, 2003.

[23] Anna Gerber and Kerry Raymond. Mof to emf: there and back again. In eclipse
’03: Proceedings of the 2003 OOPSLA workshop on eclipse technology eXchange,
pages 60–64, New York, NY, USA, 2003. ACM Press.

60

http://drops.dagstuhl.de/opus/volltexte/2005/21
http://drops.dagstuhl.de/opus/volltexte/2005/427
http://www.eclipse.org/jdt
http://www.eclipse.org/pde

BIBLIOGRAPHY

[24] Marcus Alanen and Ivan Porres. A relation between context-free grammars and
meta object facility metamodels. Technical Report 606, TUCS - Turku Centre for
Computer Science, Turku, Finland, Mar 2004.

[25] Bertrand Meyer. Introduction to the theory of programming languages. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[26] Terence Parr. ANTLR — another tool for language recognition — parser generator.
http://www.antlr.org/, May 2006.

[27] Sebastian Schaffert and Francois Bry. Querying the web reconsidered: A practical
introduction to xcerpt, April 2004.

[28] Sandia National Laboratories. Jess, the rule engine for the java platform.
http://herzberg.ca.sandia.gov/jess, May 2006.

[29] The REWERSE project. Prototype component models and composition technology
toolset for integration of logic-programming-like REWERSE languages, September
2005.

[30] Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. In
Partial Evaluation and Semantics-Based Program Manipulation, Amsterdam, The
Netherlands, June 1997, pages 203–217. New York: ACM, 1997.

[31] Clemens Ley. A robust parser for the web query language xcerpt, July 2004. project
work.

61

http://www.antlr.org/
http://herzberg.ca.sandia.gov/jess

Confirmation

I confirm that I independently prepared the thesis and that I used only the references
and auxiliary means indicated in the thesis.

Dresden, June 8, 2006

	Introduction
	The Topic
	The Structure Of This Document

	Background
	Languages And Models
	Models
	Metamodels And Megamodels
	Two-Layered Models

	Invasive Software Composition
	Universal Genericity And Extensibility
	In-line Template Expansion

	Eclipse And The Eclipse Modeling Framework
	The Eclipse Platform
	EMF And Ecore

	Language Modeling And Processing
	Describing Languages With Ecore
	Modeling Common Language Concepts In Ecore
	Ecore And EBNF
	Abstract Vs. Concrete Syntax

	Introducing ISC Concepts To Language Core-Models
	Describing A Reuse Language With EBNF

	Composition By Tree Rewriting
	A Megamodel Of Language Models

	Tool Implementation
	Tool Structure
	The E-CoMoGen Foundation
	The Central Packages In Ecomogen.jar
	The E-CoMoGen Core Plugin

	EMF Code And Parser Generation
	Hooking Into Eclipse --- The E-CoMoGen IDE

	Language Examples
	An Imperative Programming Language --- Graal
	Introducing A Component Model
	Defining A Composition Language
	A First Composition Example
	An Enhanced Composition Language
	A Second Composition Example

	A Language From The Semantic Web Domain --- Xcerpt
	Reuse-Xcerpt

	Towards Language Composition --- EBNF
	Reuse-Graal Composed

	Outlook
	Semantics Of Languages
	Automatic Component Model Generation
	The Relationship Between Reuse And Core Language
	Further Development Of E-CoMoGen

	Conclusion
	EBNF Grammar Of EBNF
	EBNF Grammar Of Reuse-Graal
	EBNF Grammar Of Reuse-Xcerpt
	Bibliography

